

DFSMS/MVS Version 1 Release 5 IBM

Utilities

 SC26-4926-03

DFSMS/MVS Version 1 Release 5 IBM

Utilities

 SC26-4926-03

 Note!

Before using this information and the product it supports, be sure to read the “Notices” on page xv.

| Fourth Edition (March 1999)

This edition applies to Version 1 Release 5 of DFSMS/MVS (5695-DF1), Release 7 of OS/390 (5647-A01), and any subsequent
releases until otherwise indicated in new editions. Make sure you are using the correct edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address given below.

A form for readers' comments appears at the back of this publication. If the form has been removed, address your comments to:

International Business Machines Corporation
RCF Processing Department

 G26/050
5600 Cottle Road
SAN JOSE, CA 95193-0001

 U.S.A.

Or you can send your comments electronically to starpubs@vnet.ibm.com.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1979, 1999. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . xv
Programming Interface Information . xv

Trademarks . xvi

About This Book . xvii
Required Product Knowledge . xviii
How to Tell if this Book is Current . xix
Related Publications . xix
Referenced Publications . xix
References to Product Names Used in DFSMS/MVS Publications xx

Summary of Changes . xxiii
| Fourth Edition, March 1999 . xxiii

Third Edition, December 1995 . xxiii
Service Update to Version 1 Release 3, June 1996 xxiii

Second Edition, June 1994 . xxiii

Introduction . 1
Guide to Utility Program Functions . 1
System Utility Programs . 5
Data Set Utility Programs . 5
Control . 6

Job Control Statements . 6
Utility Control Statements . 8

Notational Conventions . 9
Special Referencing Aids . 11

IEBCOMPR (Compare Data Sets) Program 13
Input and Output . 14
Control . 14

Job Control Statements . 15
Utility Control Statements . 15

IEBCOMPR Examples . 17
Example 1: Compare Data Sets that Reside on Tape 18
Example 2: Compare Sequential Data Sets that Reside on Tape 19
Example 3: Compare Sequential Data Sets Written at Different Densities . 19
Example 4: Compare Sequential Data Sets—Card and Tape Input 20
Example 5: Copy and Compare Sequential Data Set in Two Job Steps . . 20
Example 6: Compare Two Partitioned Data Sets 21
Example 7: Copy and Compare Partitioned Data Set in Two Job Steps . . 22
Example 8: Compare Two PDSEs . 22

IEBCOPY (Library Copy) Program . 25
Converting Load Modules to Program Objects or the Reverse 25
Converting Partitioned Data Sets to PDSEs . 26

Copying Data Sets . 26
Merging Data Sets . 27
Unloading (Backing up) Data Sets . 27
Loading or Copying Unload Data Sets . 28
Selecting Members to be Copied, Unloaded, or Loaded 29

 Copyright IBM Corp. 1979, 1999 iii

Excluding Members from a Copy Operation 30
Copying Members That Have Alias Names (COPY Statement) 30
Copying Program Objects (COPYGRP Statement) 32
Compressing a Partitioned Data Set . 34
Altering Load Modules . 35
Copying and Reblocking Load Modules . 35
How IEBCOPY uses Virtual Storage for Tables and Buffers 36
Avoiding the Need to Supply Control Statements 37

Input and Output . 38
Return Codes . 39

Restrictions . 39
Control . 40

Job Control Statements . 41
Utility Control Statements . 46
Determining the IEBCOPY Operation To Be Performed 46
Scope of Operation . 47

IEBCOPY Examples . 53
Example 1: Copy an Entire Data Set . 54
Example 2: Merge Four Data Sets . 56
Example 3: Copy and Replace Selected Members of a Data Set 59
Example 4: Unload and Compress a Data Set 61
Example 5: Merge Data Sets and Compress the Merged Data Set 62
Example 6: Multiple Copy Operations with One Output Data Set 64
Example 7: Multiple Copy Operations with Different Output Data Sets . . . 68
Example 8: Loading a Data Set . 72
Example 9: Unload Selected Members, Load, Copy and Merge 73
Example 10: Alter Load Modules in Place 75
Example 11: Replace a Load Module Using COPYMOD 76
Example 12: Reblock Load Library and Distribute It to Different Device

Types . 77
Example 13: Convert a Partitioned Data Set to a PDSE 78
Example 14: Copy Groups from a PDSE to a PDSE 78
Example 15: Copy Groups from a PDSE to a PDSE with Replace 79
Example 16: Copy a Selected Group from a PDSE to a PDSE 80

IEBDG (Test Data Generator) Program . 81
Selecting a Pattern . 81

IBM-Supplied Patterns . 81
User-Specified Patterns . 82

Modifying Fields in a Record . 83
Input and Output . 84
Control . 84

Job Control Statements . 84
Utility Control Statements . 86

IEBDG Examples . 98
Example 1: Place Binary Zeros in Records Copied from Sequential Data Set 99
Example 2: Ripple 10-byte Alphabetic Pattern 99
Example 3: Create Output Records from Utility Control Statements 100
Example 4: Use Members and Input Records as Basis of Output Member 101
Example 5: Create Records in Three Output Data Sets and Write them to

Three Partitioned Data Set Members . 104
Example 6: Construct Records with Your Own Patterns 105

IEBEDIT (Edit Job Stream) Program . 109

iv DFSMS/MVS V1R5 Utilities

Input and Output . 109
Control . 110

Job Control Statements . 110
Utility Control Statement . 111

IEBEDIT Examples . 112
Example 1: Copy One Job . 112
Example 2: Copy Steps from Three Jobs 113
Example 3: Include Step from One Job, Exclude Step from Another . . . 114
Example 4: Copy Statement for JOBA and JOB STEPF 114
Example 5: Copy Entire Input Data Set . 115
Example 6: Copy Entire Data Set to Include New Delimiter 115

IEBGENER (Sequential Copy/Generate Data Set) Program 117
Creating a Backup Copy . 117
Producing a Partitioned Data Set or PDSE from Sequential Input 117
Adding Members to a Partitioned Data Set or PDSE 118
Producing an Edited Data Set . 119
Changing Logical Record Length . 120
Using IEBGENER with Double-Byte Character Set Data 121
Input and Output . 121
Control . 122

Job Control Statements . 122
Utility Control Statements . 124

IEBGENER Examples . 132
Example 1: Print a Sequential Data Set . 132
Example 2: Create a Partitioned Data Set from Sequential Input 133
Example 3: Convert Sequential Input into Partitioned Members 134
Example 4: In-stream Input, Sequential Data Set to Tape Volume 134
Example 5: Produce Blocked Copy on Tape from Unblocked Disk File . . 135
Example 6: Edit and Copy a Sequential Input Data Set with Labels . . . 136
Example 7: Edit and Copy a Sequential Input Data Set 137
Example 8: Edit Double-Byte Character Set Data 138

IEBIMAGE (Create Printer Image) Program 141
Storage Requirements for SYS1.IMAGELIB Data Set 141
Maintaining the SYS1.IMAGELIB Data Set . 143

General Module Structure . 143
Naming Conventions for Modules . 144

Using IEBIMAGE . 144
Creating a Forms Control Buffer Module . 144
Creating a Copy Modification Module . 149
Creating a Character Arrangement Table Module 150
Creating a Graphic Character Modification Module 154
Creating a Library Character Set Module 157

Input and Output . 160
Control . 160

Job Control Statements . 160
Utility Control Statements . 161
FCB Statement . 162
COPYMOD Statement . 166
TABLE Statement . 169
GRAPHIC Statement . 170
CHARSET Statement . 173
INCLUDE Statement . 175

 Contents v

NAME Statement . 176
OPTION Statement . 177

IEBIMAGE Examples . 179
Example 1: Build a New 3800 Forms Control Buffer Module 180
Example 2: Replace a 3800 Forms Control Buffer Module 181
Example 3: Replace a 3800 Forms Control Buffer Module 182
Example 4: Build a New 3800 Forms Control Buffer Module 183
Example 5: Replace the 3800 Forms Control Buffer Module STD3 183
Example 6: Build a New 3800 Forms Control Buffer Module for Additional

ISO Paper Sizes . 184
Example 7: Build a 4248 Forms Control Buffer Module 185
Example 8: Build a New Copy Modification Module 185
Example 9: Build a New Copy Modification Module from an Existing Copy 187
Example 10: Add a New Character to a Character Arrangement Table

Module . 188
Example 11: Build a New Character Arrangement Table Module from an

Existing Copy . 188
Example 12: Build Graphic Characters in a Character Arrangement Table

Module . 189
Example 13: Delete Graphic References From a Character Arrangement

Table Module . 190
Example 14: List the World Trade National Use Graphics Graphic

Character Modification Module . 191
Example 15: Build a Graphic Character Modification Module from the

Character Modification Module World Trade GRAFMOD 191
Example 16: Build a New Graphic Character Modification Module and

Modify a Character Arrangement Table to Use It 192
Example 17: Build a Graphic Character Modification Module from Multiple

Sources . 193
Example 18: Define and Use a Character in a Graphic Character

Modification Module . 194
Example 19: List a Library Character Set Module 197
Example 20: Build a Library Character Set Module 197
Example 21: Build a Library Character Set Module and Modify a Character

Arrangement Table to Use It . 198
Example 22: Build a Library Character Set Module from Multiple Sources 200

IEBISAM Program . 203
Copying an ISAM Data Set . 203
Creating a Sequential Backup Copy . 203
Overriding DCB Control Information . 204
Creating an ISAM Data Set from an Unloaded Data Set 205
Printing the Logical Records of an ISAM Data Set 205

Using IEBISAM User Exits . 206
Input and Output . 207
Control . 207

EXEC Statement . 208
IEBISAM Examples . 209

Example 1: Copy Data Set from Two Volumes 209
Example 2: Unload an ISAM Data Set . 210
Example 3: Load an Unloaded ISAM Data Set 210
Example 4: Print an ISAM Data Set . 210

IEBPTPCH (Print-Punch) Program . 213

vi DFSMS/MVS V1R5 Utilities

Printing or Punching an Entire Data Set or Selected Member 213
Printing or Punching an Edited Data Set . 213
Printing or Punching Double-Byte Character Set Data 214
Printing or Punching Selected Records . 214
Printing or Punching a Partitioned Directory 214
Printing or Punching to Disk or Tape . 215

Input and Output . 215
Control . 215
Job Control Statements . 215
Utility Control Statements . 217

IEBPTPCH Examples . 226
Example 1: Print Partitioned Data Set . 227
Example 2: Punch Sequential Data Sets 227
Example 3: Duplicate a Card Deck . 228
Example 4: Print Sequential Data Set According to Default Format 228
Example 5: Print Sequential Data Set According to User Specifications . 229
Example 6: Print Three Record Groups . 230
Example 7: Print a Pre-Formatted Data Set 231
Example 8: Print Directory of a Partitioned Data Set 231
Example 9: Print Selected Records of a Partitioned Data Set 232
Example 10: Convert to Hexadecimal and Print Partitioned Data 233
Example 11: Print Member Containing DBCS Data 234

IEBUPDTE (Update Data Set) Program . 235
Creating and Updating Data Set Libraries . 235
Modifying an Existing Data Set . 235
Changing Data Set Organization . 235

Input and Output . 236
Control . 236
Job Control Statements . 236
Utility Control Statements . 238

IEBUPDTE Examples . 249
Example 1: Place Two Procedures in SYS1.PROCLIB 250
Example 2: Create a Three-Member Library 251
Example 3: Create New Library Using SYS1.MACLIB as a Source 252
Example 4: Update a Library Member . 253
Example 5: Create New Master Data Set and Delete Selected Records . 254
Example 6: Create and Update a Library Member 254
Example 7: Insert Records into a Library Member 256
Example 8: Renumber and Insert Records into a Library Member 257
Example 9: Create a Sequential Data Set from Card Input 259
Example 10: Copy Sequential Data Set from One Volume to Another . . 260
Example 11: Create a New Generation Data Set 260

IEHATLAS Program . 263

IEHINITT (Initialize Tape) Program . 265
Placing a Standard Label Set on Magnetic Tape 267
Using DFSMSrmm . 268
Input and Output . 268
Control . 269

Job Control Statements . 269
| Tape Library Dataserver Considerations . 270

Utility Control Statement . 271

 Contents vii

IEHINITT Examples . 273
Example 1: Write EBCDIC Labels on Three Tapes 274
Example 2: Write an ISO/ANSI Label on a Tape 274
Example 3: Place Two Groups of Serial Numbers on Six Tape Volumes 275
Example 4: Place Serial Number on Eight Tape Volumes 275
Example 5: Write EBCDIC Labels in Different Densities 276
Example 6: Write Serial Numbers on Tape Volumes at Two Densities . . 276
Example 7: Write an ISO/ANSI Label with an Access Code 277

IEHLIST (List System Data) Program . 279
Listing CVOL Entries . 279
Listing a Partitioned Data Set or PDSE Directory 279

Edited Format . 280
Unedited (Dump) Format . 281

Listing a Volume Table of Contents . 281
Edited Format . 282

Input and Output . 284
Control . 284

Job Control Statements . 284
Utility Control Statements . 286

IEHLIST Examples . 289
Example 1: List CVOL Entries . 289
Example 2: List Selected CVOL Entries . 290
Example 3: List Partitioned Directories Using DUMP and FORMAT . . . 290
Example 4: List Non-indexed Volume Table of Contents 291

IEHMOVE (Move System Data) Program . 293
Considering Volume Size Compatibility . 294
Allocating Space for a Moved or Copied Data Set 295

Reblocking Data Sets . 297
Using IEHMOVE with RACF . 297

Moving or Copying a Data Set . 298
Sequential Data Sets . 298
Partitioned Data Sets . 299
BDAM Data Sets . 301
Multivolume Data Sets . 302
Unloaded Data Sets . 302
Unmovable Data Sets . 303

Moving or Copying a Group of Cataloged Data Sets 303
Move or Copy a CVOL . 304
Moving or Copying a Volume of Data Sets . 305
Input and Output . 306
Control . 306

Job Control Statements . 307
Utility Control Statements . 311

MOVE DSNAME and COPY DSNAME Statements 312
MOVE DSGROUP and COPY DSGROUP Statements 314
MOVE PDS and COPY PDS Statements 316
MOVE CATALOG and COPY CATALOG Statements 319
MOVE VOLUME and COPY VOLUME Statements 320
INCLUDE Statement . 322
EXCLUDE Statement . 323
SELECT Statement . 323
REPLACE Statement . 324

viii DFSMS/MVS V1R5 Utilities

IEHMOVE Examples . 325
Example 1: Move Sequential Data Sets from Disk Volume to Separate

Volumes . 325
Example 2: Move Partitioned Data Set to Disk Volume and Merge 326
Example 3: Move Volume of Data Sets to Disk Volume 327
Example 4: Move Partitioned Data Set to Allocated Space 327
Example 5: Move and Unload Partitioned Data Sets Volume 328
Example 6: Unload Sequential Data Set onto Unlabeled Tape Volume . . 329
Example 7: Load Unloaded Sequential Data Sets from Labeled Tape . . 329
Example 8: Move Cataloged Data Set Group 330
Example 9: Move an CVOL . 331
Example 10: Move Data Sets Cataloged in an CVOL 331

IEHPROGM (Program Maintenance) Program 333
Scratching or Renaming a Data Set or Member 333
Cataloging a Data Set in a CVOL . 335
Building or Deleting an Index Alias in a CVOL 336
Building or Deleting an Index Alias in a CVOL 336
Connecting or Releasing Two CVOLs . 337
Building and Maintaining a Generation Data Group Index in a CVOL 339
Maintaining Data Set Passwords . 339

Adding Data Set Passwords . 341
Replacing Data Set Passwords . 342
Deleting Data Set Passwords . 342
Listing Password Entries . 342

Input and Output . 342
Control . 343

Job Control Statements . 343
Utility Control Statements . 345

IEHPROGM Examples . 355
Example 1: Scratch Temporary System Data Sets 356
Example 2: Scratch and Uncatalog Two Data Sets 356
Example 3: Rename a Multi-Volume Data Set Cataloged in a CVOL . . . 357
Example 4: Uncatalog Three Data Sets . 357
Example 5: Rename a Data Set and Define New Passwords 357
Example 6: List and Replace Password Information 358
Example 7: Rename a Partitioned Data Set Member 359
Example 8: Define New CVOL and Connect It to Existing CVOL 359
Example 9: Build a Generation Data Group Index in a CVOL 360
Example 10: Create Model DSCB and Build Generation Data Group Index 361

IFHSTATR (List ESV Data) Program . 363
Assessing the Quality of Tapes in a Library 364

Input and Output . 365
Control . 366
IFHSTATR Example . 367

Appendix A. Invoking Utility Programs from an Application Program . 369
Building Parameter Lists . 370

Options List . 370
ddname List . 371
Page Header Parameter . 373

Return Codes . 373
IEBCOMPR Return Codes . 373

 Contents ix

IEBCOPY Return Codes . 374
IEBDG Return Codes . 374
IEBEDIT Return Codes . 374
IEBGENER Return Codes . 375
IEBIMAGE Return Codes . 375
IEBISAM Return Codes . 375
IEBPTPCH Return Codes . 376
IEBUPDTE Return Codes . 376
IEHINITT Return Codes . 376
IEHLIST Return Codes . 377
IEHMOVE Return Codes . 377
IEHPROGM Return Codes . 377

Appendix B. Unload Partitioned Data Set Format 379
Introduction . 379

Records Present in an Unload Data Set . 379
Different Unload Data Set Formats . 380
Detailed Record Descriptions . 381

Appendix C. Specifying User Exits with Utility Programs 389
General Guidance . 389

Register Contents at Entry to Routines from Utility Programs 390
Programming Considerations . 390
Returning from an Exit Routine . 390
Parameters Passed to Label Processing Routines 393
Parameters Passed to Nonlabel Processing Routines 393

Processing User Labels . 394
Processing User Labels as Data Set Descriptors 394
Exiting to a Totaling Routine . 395
Processing User Labels as Data . 396

Using an Exit Routine with IEBDG . 396

Appendix D. IEHLIST VTOC Listing . 399
Explanation of Fields in IEHLIST Formatted VTOC Listing 400

Abbreviations . 403

Glossary . 405

Index . 413

x DFSMS/MVS V1R5 Utilities

 Figures

1. Tasks and Utility Programs . 1
2. System Utility Programs . 5
3. Data Set Utility Programs . 6
4. Example Directory . 11
5. Partitioned Directories Whose Data Sets Can Be Compared Using

IEBCOMPR . 13
6. Partitioned Directories Whose Data Sets Cannot Be Compared Using

IEBCOMPR . 14
7. Job Control Statements for IEBCOMPR 15
8. IEBCOMPR Utility Control Statements . 15
9. Syntax of COMPARE statement . 16

10. Syntax of EXITS statement . 16
11. Syntax of LABEL statement . 17
12. IEBCOMPR Example Directory . 18
13. Job Control Statements for IEBCOPY . 41
14. IEBCOPY Utility Control Statements . 46
15. Multiple Copy Operations within a Job Step 47
16. IEBCOPY Example Directory . 53
17. Copying a Partitioned Data Set—Full Copy 56
18. Copying from Three Input Partitioned Data Sets 57
19. Selective Copy with Replace specified on the Member Level 59
20. Compress-in-Place Following Full Copy with “Replace” Specified 63
21. Multiple Copy Operations/Copy Steps . 66
22. Multiple Copy Operations/Copy Steps within a Job Step 70
23. IBM-Supplied Test Data Patterns . 81
24. IEBDG Actions . 83
25. Job Control Statements for IEBDG . 84
26. Syntax of EXEC statement . 85
27. IEBDG Utility Control Statements . 86
28. Field Selected from the Input Record for Use in the Output Record . . . 87
29. Syntax of FD statement . 88
30. Compatible IEBDG Operations . 91
31. Syntax of REPEAT statement . 92
32. Default Placement of Fields within an Output Record Using IEBDG . . . 93
33. Placement of Fields with Specified Output Locations 94
34. Placement of Fields with Only Some Output Locations Specified 94
35. Creating Output Records with Utility Control Statements 95
36. Syntax of CREATE statement . 95
37. Syntax of END statement . 98
38. IEBDG Example Directory . 98
39. Output Records at Job Step Completion 100
40. Output Partitioned Member at Job Step Completion 102
41. Partitioned Data Set Members at Job Step Completion 104
42. Contents of Output Records at Job Step Completion 106
43. Job Control Statements for IEBEDIT . 110
44. IEBEDIT Example Directory . 112
45. Creating a Partitioned Data Set or PDSE from Sequential Input Using

IEBGENER . 118
46. Adding Members to a Partitioned Data Set or PDSE Using IEBGENER 119
47. Editing a Sequential Data Set Using IEBGENER 120

 Copyright IBM Corp. 1979, 1999 xi

48. Job Control Statements for IEBGENER 122
49. IEBGENER Utility Control Statements 125
50. IEBGENER Example Directory . 132
51. How a Sequential Data Set is Edited and Copied 138
52. Members per track (T) for various devices 142
53. 3800 General Module Header . 144
54. 3800 FCB Module Structure . 145
55. 4248 FCB Module Structure . 146
56. 4248 FCB Module Control Byte . 146
57. 4248 FCB Module Data Byte . 147
58. IEBIMAGE Listing of a Forms Control Buffer Module 148
59. Copy Modification Module Structure . 149
60. IEBIMAGE Listing of Three Segments of a Copy Modification Module . 150
61. Character Arrangement Table Module Structure 152
62. IEBIMAGE Listing of a Character Arrangement Table Module 153
63. 3800 Graphic Character Modification Module Structure for One

Character . 155
64. IEBIMAGE Listing of Two Segments of a Graphic Character Modification

Module . 156
65. 3800 Model 3 Library Character Set Module Structure for One Character 157
66. IEBIMAGE Listing of Two Segments of a Library Character Set 159
67. Job Control Statements for IEBIMAGE 160
68. Utility Control Statements for IEBIMAGE 161
69. IEBIMAGE Listing of a Copy Modification Module with Overrun Notes . 179
70. IEBIMAGE Example Directory . 180
71. An Unloaded Data Set Created Using IEBISAM 205
72. Record Heading Buffer Used by IEBISAM 206
73. IEBISAM User Exit Return Codes . 207
74. Job Control Statements for IEBISAM . 207
75. IEBISAM Example Directory . 209
76. Job Control Statements for IEBPTPCH 216
77. IEBPTPCH Utility Control Statements . 217
78. IEBPTPCH Example Directory . 226
79. Job Control Statements for IEBUPDTE 236
80. IEBUPDTE Utility Control Statements . 238
81. NEW, MEMBER and NAME Parameters of the Function Statements . 244
82. IEBUPDTE Example Directory . 249
83. Example of Reordered Sequence Numbers 257
84. Reordered Sequence Numbers . 258
85. IBM Standard Label Group after Volume Receives Data 267
86. IEHINITT Job Control Statements . 269
87. Printout of INITT Statement Specifications and Initial Volume Label

Information . 271
88. IEHINITT Example Directory . 274
89. Index Structure–Listed by IEHLIST . 279
90. Sample of an Edited Partitioned Directory Entry 280
91. Format of an Unedited Listing of a Partitioned Data Set or PDSE

Directory . 281
92. IEHLIST Job Control Statements . 285
93. IEHLIST Utility Control Statements . 286
94. IEHLIST Example Directory . 289
95. Move and Copy Operations—DASD Receiving Volume with Size

Compatible with Source Volume . 294

xii DFSMS/MVS V1R5 Utilities

96. Move and Copy Operations—DASD Receiving Volume with Size
Incompatible with Source Volume . 295

97. Move and Copy Operations—Non-DASD Receiving Volume 295
98. Moving and Copying Sequential Data Sets 298
99. Moving and Copying Partitioned Data Sets 299
100. Partitioned Data Set Before and After an IEHMOVE Copy Operation . 300
101. Merging Two Data Sets Using IEHMOVE 300
102. Merging Three Data Sets Using IEHMOVE 301
103. Moving and Copying a Group of Cataloged Data Sets 304
104. Moving and Copying the CVOL . 305
105. Moving and Copying a Volume of Data Sets 306
106. IEHMOVE Job Control Statements . 307
107. IEHMOVE Utility Control Statements . 311
108. IEHMOVE Example Directory . 325
109. Index Structure Before and After an IEHPROGM Build Operation . . . 336
110. Building an Index Alias Using IEHPROGM 337
111. Connecting a CVOL to a Second CVOL Using IEHPROGM 338
112. Connecting Three CVOLs Using IEHPROGM 338
113. Building a Generation Data Group Index Using IEHPROGM 339
114. Relationship between the Protection Status of a Data Set and Its

Passwords . 340
115. Listing of a Password Entry . 342
116. IEHPROGM Job Control Statements . 343
117. IEHPROGM Utility Control Statements 345
118. IEHPROGM Example Directory . 355
119. SMF Type 21 (ESV) Record Format (48 bytes) 363
120. SMF Type 21 (ESV) Record Format (62 Bytes) 364
121. Sample Output from IFHSTATR . 365
122. IFHSTATR Job Control Statements . 366
123. Contents of the COPYR1 Descriptor Record 381
124. Contents of the COPYR2 Descriptor Record 383
125. Directory Record Layout . 384
126. Attribute Record Layout . 384
127. Note List Record Layout . 385
128. Member Data Record Layout . 386
129. Member Data Block Layout . 386

| 130. End-of-File Block Layout . 387
131. User-Exit Routines Specified with Utilities 389
132. Return Codes That Must Be Issued by User Exit Routines 391
133. Parameter Lists for Nonlabel Processing Exit Routines 393
134. System Action at OPEN, EOV, or CLOSE Time 395
135. User Totaling Routine Return Codes . 395
136. IEBDG User Exit Return Codes . 396
137. IEHLIST Sample Output—VTOC (for extended format sequential data

sets) . 399
138. IEHLIST Sample Output—VTOC (for sequential, partitioned data sets

and PDSEs) . 400

 Figures xiii

xiv DFSMS/MVS V1R5 Utilities

 Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.

Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any func-
tionally equivalent product, program, or service that does not infringe any of the
intellectual property rights of IBM may be used instead of the IBM product,
program, or service. The evaluation and verification of operation in conjunction with
other products, programs, or services, except those expressly designated by IBM,
are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
 IBM Corporation

North Castle Drive
Armonk, NY 10504-1785

 USA

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

 IBM Corporation
Information Enabling Requests

 Dept. DWZ
5600 Cottle Road
San Jose, CA 95193

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

Any pointers in this publication to non-IBM Web sites are provided for convenience
only, and do not in any manner serve as an endorsement of these Web sites.

Programming Interface Information
This book is intended to help you use the DFSMS/MVS utility programs.

This book also documents General-use Programming Interface and Associated
Guidance Information provided by DFSMS/MVS. General-use programming inter-
faces allow the customer to write programs that obtain the services of
DFSMS/MVS.

General-use Programming Interface and Associated Guidance Information is identi-
fied where it occurs, either by an introductory statement to a chapter or section or
by the following marking:

 Copyright IBM Corp. 1979, 1999 xv

General-use programming interface

General-use Programming Interface and Associated Guidance Information.

End of General-use programming interface

| .

 Trademarks
The following terms are trademarks of the IBM Corporation in the United States, or
other countries, or both:

UNIX is a registered trademark in the United States and/or other countries licensed
exclusively through X/Open Company Limited.

Other company, product, and service names, which may be denoted by a double
asterisk (**), may be trademarks or service marks of others.

ADSTAR
ADVANCED FUNCTION PRINTING
APPLICATION SYSTEM/400
AS/400
DATABASE 2
DB2
DFSMS
DFSMS/MVS
DFSMSdfp
DFSMSdss
DFSMShsm
DFSMSrmm
DFSORT
ENTERPRISE SYSTEMS ARCHITECTURE/390
ESA/370
ESA/390
ESCON
Hardware Configuration Definition
Hiperbatch
IBM
IMS/ESA
MVS/DFP
MVS/ESA

MVS/XA
OpenEdition
OS/2
OS/390
PERSONAL SYSTEM/2
RACF
RAMAC
RESOURCE MEASUREMENT FACILITY
RETAIN
RMF
S/370
System/390
VTAM

xvi DFSMS/MVS V1R5 Utilities

About This Book

This book is intended to help you use the DFSMS/MVS utility programs to manipu-
late system and user data and data sets. To enable you to find information more
easily, program descriptions are all organized, as much as possible, in the same
way. Most programs are discussed according to the following pattern:

� Introduction to and description of the functions that can be performed by the
program. This description typically includes an overview of the program's use,
definitions of terms, and illustrations.

� Functions supported by the utility and the purpose of each function.

� Input and output used and produced by the program.

� Control of the program through job and utility control statements. Job control
statements are described only insofar as their use in the utility program is
peculiar to that program. Utility control statements are discussed in full.

� Examples of using the program, including the job and utility control statements.

Use of the following utilities is not recommended:

� ICAPRTBL— The 3211 printer is no longer supported.

� IEBISAM— VSAM is recommended. For information on converting ISAM data
sets to VSAM key-sequenced data sets, see DFSMS/MVS Using Data Sets
and the REPRO command in DFSMS/MVS Access Method Services for ICF.

� IEHMOVE— DFSMSdss and IEBCOPY are recommended.

� IEHPROGM— IDCAMS is recommended for non CVOL tasks.

The information given on these utilities is provided for the sake of compatibility only.

There are several specialized utilities not discussed in this book. The following list
shows their names and functions, and indicates which book contains their explana-
tion.

 Copyright IBM Corp. 1979, 1999 xvii

Utility Function Reference

IDCAMS Allows users to define, manipulate, or delete
VSAM data sets, define and manipulate integrated
catalog facility catalogs, and copy, print, or
convert SAM and ISAM data sets to VSAM data
sets.

DFSMS/MVS Access Method Ser-
vices for ICF, SC26-4906

Device Support Facilities
(ICKDSF)

Used for the initialization and maintenance of
DASD volumes.

Device Support Facilities User’s
Guide and Reference, GC35-0033

DFSMSdss Describes DASD utility functions such as
dump/restore and reduction of free space frag-
mentation.

DFSMS/MVS DFSMSdss Storage
Administration Guide, SC26-4930
DFSMS/MVS DFSMSdss Storage
Administration Reference,
SC26-4929

Offline IBM 3800 Utility Describes the Offline IBM 3800 Utility program,
used with the IBM 3800 Tape-to-Printing Sub-
system Feature.

Offline IBM 3800 Utility,
SH20-9138

IEFBR14 Performs no action other than give return code 0
but the job scheduler checks JCL statements for
syntax errors, allocates space for data sets and
performs disposition processing.

OS/390 MVS JCL User's Guide,
GC28-1758

Required Product Knowledge
To use this book effectively, you should be familiar with:

| � Appplications that use tape at your installation
| � DFSMS/MVS
| � Method of allocation in MVS
| � Job control language (JCL)
| � Data management
| � System management facilities (SMF)
| � Tape and DASD hardware
| � Tape mount management

You should also be familiar with the information presented in the following
publications:

Publication Title
Order
Number

DFSMS/MVS Using Data Sets SC26-4922

OS/390 MVS Assembler Services Guide GC28-1762

OS/390 MVS JCL Reference GC28-1757

OS/390 MVS JCL User's Guide GC28-1758

OS/390 MVS System Messages, Vol 1 (ABA-ASA) GC28-1784

OS/390 MVS System Messages, Vol 2 (ASB-EWX) GC28-1785

OS/390 MVS System Messages, Vol 3 (GDE-IEB) GC28-1786

OS/390 MVS System Messages, Vol 4 (IEC-IFD) GC28-1787

OS/390 MVS System Messages, Vol 5 (IGD-IZP) GC28-1788

xviii DFSMS/MVS V1R5 Utilities

How to Tell if this Book is Current
IBM regularly updates its books with new and changed information. When first pub-
lished, both hardcopy and BookManager softcopy versions of a book are identical,
but subsequent updates might be available in softcopy before they are available in
hardcopy. Here's how to determine the level of a book:

� Check the book's order number suffix (often referred to as the dash level). A
book with a higher dash level is more current than one with a lower dash level.
For example, in the publication order number SC26-4930-02, the dash level 02
means that the book is more current than previous levels, such as 01 or 00.
Suffix numbers are updated as a product moves from release to release, as
well as for hardcopy updates within a given release.

� Check to see if you are using the latest softcopy version. To do this, compare
the last two characters of the book's file name (also called the book name). The
higher the number, the more recent the book. For example, DGT1U302 is more
recent than DGT1U301.

� Compare the dates of the hardcopy and softcopy versions of the books. Even if
the hardcopy and softcopy versions of the book have the same dash level, the
softcopy could be more current. This will not be apparent from looking at the
edition notice. The edition notice number and date remain that of the last hard-
copy version. When you are looking at the softcopy product bookshelf, check
the date shown to the right of the book title. This will be the date that the
softcopy version was created.

Also, an asterisk (*) is added next to the new and changed book titles in the
CD-ROM booklet and the README files.

Vertical lines to the left of the text indicate changes or additions to the text and
illustrations. For a book that has been updated in softcopy only, the vertical lines
indicate changes made since the last printed version.

 Related Publications
Some publications from the MVS/ESA System Product Version 4 library are refer-
enced in this book. OS/390 MVS Diagnosis: Reference, SY28-1084, contains a
complete list of the MVS/ESA System Product Version 4 publications, and identifies
any publications that are new or that replace publications in the previous version.

Messages from utility programs are documented in OS/390 MVS System Mes-
sages, Vol 1 (ABA-ASA), OS/390 MVS System Messages, Vol 2 (ASB-EWX),
OS/390 MVS System Messages, Vol 3 (GDE-IEB), OS/390 MVS System Mes-
sages, Vol 4 (IEC-IFD), OS/390 MVS System Messages, Vol 5 (IGD-IZP).

 Referenced Publications
Within the text, references are made to the following publications:

 About This Book xix

Short Title Publication Title Order Number

OS/390 MVS Authorized
Assembler Services Guide

OS/390 MVS Authorized Assembler
Services Guide

GC28-1763

IBM 3800 Printing Subsystem
Programmer’s Guide

IBM 3800 Printing Subsystem
Programmer’s Guide

GC26-3846

IBM 3800 Printing Subsystem
Model 3 Programmer’s Guide:
Compatibility

IBM 3800 Printing Subsystem Model
3 Programmer’s Guide: Compatibility

SH35-0051

OS/390 MVS JCL Reference OS/390 MVS JCL Reference GC28-1757

OS/390 MVS JCL User's
Guide

OS/390 MVS JCL User's Guide GC28-1758

DFSMS/MVS Access Method
Services for ICF

DFSMS/MVS Access Method Ser-
vices for ICF

SC26-4906

DFSMS/MVS Program Man-
agement

DFSMS/MVS Program Management SC26-4916

DFSMS/MVS Macro
Instructions for Data Sets

DFSMS/MVS Macro Instructions for
Data Sets

SC26-4913

DFSMS/MVS Managing Cata-
logs

DFSMS/MVS Managing Catalogs SC26-4914

DFSMS/MVS DFSMSdfp
Storage Administration Refer-
ence

DFSMS/MVS DFSMSdfp Storage
Administration Reference

SC26-4920

DFSMS/MVS DFSMSdfp
Advanced Services

DFSMS/MVS DFSMSdfp Advanced
Services

SC26-4921

DFSMS/MVS Using Data Sets DFSMS/MVS Using Data Sets SC26-4922

DFSMS/MVS Using Magnetic
Tapes

DFSMS/MVS Using Magnetic Tapes SC26-4923

Reference Manual for the IBM
3800 Printing Subsystem
Model 1

Reference Manual for the IBM 3800
Printing Subsystem Model 1

GA26-1635

OS/390 MVS Diagnosis:
Tools and Service Aids

OS/390 MVS Diagnosis: Tools and
Service Aids

SY28-1085

OS/390 MVS Assembler Ser-
vices Reference

OS/390 MVS Assembler Services
Reference

GC28-1910

OS/390 TSO/E Programming
Services

OS/390 TSO/E Programming Ser-
vices

SC28-1971

References to Product Names Used in DFSMS/MVS Publications
DFSMS/MVS publications support DFSMS/MVS, 5695-DF1, as well as the
DFSMSdfp base element and the DFSMShsm, DFSMSdss, and DFSMSrmm fea-
tures of OS/390, 5647-A01. DFSMS/MVS publications also describe how
DFSMS/MVS interacts with other IBM products to perform the essential data,
storage, program and device management functions of the operating system.

DFSMS/MVS publications typically refer to another IBM product using a generic
name for the product. When a particular release level of a product is relevant, the
reference includes the complete name of that product. This section explains the
naming conventions used in the DFSMS/MVS library for the following products:

xx DFSMS/MVS V1R5 Utilities

MVS can refer to:

� MVS/ESA SP Version 5, 5695-047 or 5695-048

� The MVS base control program (BCP) of OS/390, 5647-A01

All MVS book titles used in DFSMS/MVS publications refer to the OS/390 editions.
Users of MVS/ESA SP Version 5 should use the corresponding MVS/ESA book.
Refer to OS/390 Information Roadmap for titles and order numbers for all the ele-
ments and features of OS/390.

For more information about OS/390 elements and features, including their relation-
ship to MVS/ESA SP and related products, please refer to OS/390 Planning for
Installation.

RACF can refer to:

� Resource Access Control Facility (RACF), Version 2, 5695-039

� The RACF element of the OS/390 Security Server, an optional feature of
OS/390

All RACF book titles refer to the Security Server editions. Users of RACF Version 2
should use the corresponding book for their level of the product. Refer to OS/390
Security Server (RACF) Introduction for more information about the Security Server.

CICS can refer to:

 � CICS/MVS, 5665-403

 � CICS/ESA, 5685-083

� The CICS element of the CICS Transaction Server for OS/390, 5665-147

All CICS book titles refer to the CICS Transaction Server for OS/390 editions.
Users of CICS/MVS and CICS/ESA should use the corresponding books for those
products. Please see CICS Transaction Server for OS/390: Planning for Installation
for more information.

 About This Book xxi

xxii DFSMS/MVS V1R5 Utilities

Summary of Changes

The following sections describe the specific publication updates to this book.

| Fourth Edition, March 1999
| This publication is a major revision in support of the functional changes introduced
| with DFSMS/MVS Version 1 Release 5. Technical changes and additions to the
| text and illustrations are indicated by a vertical bar to the left of the change. For a
| book that has been updated in softcopy only, the vertical bar indicates changes
| made since the last printed version.

| This revision also includes maintenance and editorial changes.

| The changed information, located in the IEHINITT (Initialize Tape) Program section,
| describes how IEHINITT can now be used to initialize tape volumes in the IBM
| 3494 and IBM 3495 Tape Library Dataserver (including Virtual Tape Server) envi-
| ronments, IBM 3590 Tape Drives in library and non-library environments, and the
| IBM 3495–M10 environment. Also, changes explain that IEHINITT can initialize
| tapes to be either ISO/ANSI Version 3 or ISO/ANSI Version 4.

| Note: For other important updates to this book, please check informational APAR
| II11474, a repository of DFSMS/MVS 1.5 information that was not available
| at the time DFSMS/MVS books were published for general availability.

Third Edition, December 1995
This publication is a major revision in support of the functional changes introduced
with DFSMS/MVS Version 1 Release 3.

This revision also includes maintenance and editorial changes.

The following summarizes the changes to this publication:

� Updated IEBCOPY (Library Copy) Program section and examples with informa-
tion for using new COPYGRP function with PDSEs.

� Added support information for UCB virtual storage constraint relief. IEHLIST,
IEHPROGM and IEHMOVE do not support UCBs above the line.

� Removed all references to ICAPRTBL which is no longer shipped.

� Added new terms to Glossary sections.

Service Update to Version 1 Release 3, June 1996
This revision includes maintenance and editorial changes.

Second Edition, June 1994
This publication is a major revision in support of the functional changes introduced
with DFSMS/MVS Version 1 Release 2.

This revision also includes maintenance and editorial changes.

 Copyright IBM Corp. 1979, 1999 xxiii

The following summarizes the changes to that information.

� A small chapter was added on IEHATLAS program (see “IEHATLAS Program”
on page 263).

� The Introduction was updated to reflect shared data set program enhancements
(see “Job Control Statements” on page 6).

� IEBCOPY has new information on PDSU's.

� IEHPROGM has new information on scratching data sets.

� Minor technical and editorial changes have been made.

xxiv DFSMS/MVS V1R5 Utilities

 Introduction

DFSMS/MVS provides utility programs to assist you in organizing and maintaining
data. Utilities are simple programs which perform commonly needed functions.
“Guide to Utility Program Functions” will help you find the program that performs
the function you need.

Guide to Utility Program Functions
Figure 1 is a list of tasks that the utility programs can be used to perform. The
“Task” column shows tasks you may want to perform. The “Options” column more
specifically defines the tasks. The “Primary Utility” column identifies the utility espe-
cially suited for the task. The “Secondary Utilities” column identifies other utilities
which may be used to perform the task.

Figure 1 (Page 1 of 4). Tasks and Utility Programs

Task Options
Primary
Utility

Secondary Util-
ities

Add a password IEHPROGM

Alter in place a load module IEBCOPY

Catalog a data set in an CVOL IEHPROGM

Change data set organization IEBUPDTE IEBGENER,
IEBPTPCH

logical record length IEBGENER

Compare partitioned data sets IEBCOMPR

sequential data sets IEBCOMPR

PDSEs IEBCOMPR

Compress a partitioned data set IEBCOPY

Compress in place a partitioned data set IEBCOPY

Convert to parti-
tioned data set

an unloaded PDSE containing program objects
cannot be loaded into a PDS. An unloaded PDSE
containing data objects can be loaded into a PDS
but all extended attributes will be lost.

IEBCOPY

sequential data sets IEBGENER IEBUPDTE

a PDSE IEBCOPY

Convert to PDSE a partitioned data set IEBCOPY

an unloaded copy of a partitioned data set or PDSE IEBCOPY

sequential data sets IEBGENER IEBUPDTE

Convert to sequen-
tial data set

a partitioned data set or PDSE IEBGENER IEBUPDTE

an indexed sequential data set IEBDG IEBISAM

 Copyright IBM Corp. 1979, 1999 1

Figure 1 (Page 2 of 4). Tasks and Utility Programs

Task Options
Primary
Utility

Secondary Util-
ities

Copy a load module or load module library IEBCOPY

a partitioned data set IEBCOPY IEHMOVE

a volume of data sets (on tape or disk) IEHMOVE

an indexed sequential data set IEBISAM

job steps IEBEDIT

selected members of a partitioned data set IEBCOPY IEHMOVE

sequential data sets IEBGENER IEHMOVE,
IEBUPDTE,
IEBPTPCH

a PDSE IEBCOPY

a group of PDSE members IEBCOPY

selected members of a PDSE IEBCOPY

Create a backup copy of a partitioned data set or PDSE IEBCOPY

a character arrangement table module IEBIMAGE

a copy modification module IEBIMAGE

a 3800 or 4248 forms control buffer module IEBIMAGE

a graphic character modification module IEBIMAGE

a library character set module IEBIMAGE

a library of partitioned members IEBGENER IEBUPDTE

a member of a partitioned data set or PDSE IEBGENER IEBDG,
IEBUPDTE

a sequential output data set IEBDG IEBGENER,
IEBPTPCH

an indexed sequential data set IEBDG

an output job stream IEBEDIT

| Delete| a data set or member of a partitioned data set| IEHPROGM

password IEHPROGM

catalog entries IEHPROGM

records in a parti-
tioned data set or
PDSE member

IEBUPDTE

Edit and convert to
partitioned data set
or PDSE

a sequential data set IEBGENER IEBUPDTE

Edit and copy a job stream IEBEDIT

a sequential data set IEBGENER IEBUPDTE,
IEBPTPCH

Edit and list error statistics by volume (ESV) records IFHSTATR

Edit and print a sequential data set IEBPTPCH IEBGENER

Edit and punch a sequential data set IEBPTPCH IEBGENER

2 DFSMS/MVS V1R5 Utilities

Figure 1 (Page 3 of 4). Tasks and Utility Programs

Task Options
Primary
Utility

Secondary Util-
ities

Enter a procedure into a procedure library IEBUPDTE

Exclude a partitioned data set member from a copy operation IEBCOPY IEHMOVE

a PDSE member from a copy operation IEBCOPY

Expand a partitioned data set or PDSE IEBCOPY

a sequential data set IEBGENER

Generate test data IEBDG

Include changes to members or sequential data sets IEBUPDTE

Indicate double-byte character set string by supplying
enclosing shift-out/shift-in characters

IEBGENER IEBPTPCH

Insert records into a partitioned data set or PDSE IEBUPDTE

Label magnetic tape volumes IEHINITT

List a password entry IEHPROGM

a volume table of contents IEHLIST

number of unused directory blocks and tracks IEBCOPY

partitioned data set or PDSE directories IEHLIST

CVOL entries IEHLIST

Load an unloaded partitioned data set to a partitioned data
set

IEBCOPY

an indexed sequential data set IEBISAM

an unloaded data set IEHMOVE

an unloaded partitioned data set to a PDSE (for non-
load modules only)

IEBCOPY

an unloaded PDSE to a partitioned data set (for non-
load modules only)

IEBCOPY

an unloaded PDSE to a PDSE IEBCOPY

Merge partitioned data sets IEBCOPY IEHMOVE

PDSEs IEBCOPY

partitioned data sets and PDSEs IEBCOPY

Modify a partitioned or sequential data set, or a PDSE IEBUPDTE

Move a volume of data sets IEHMOVE

partitioned data sets IEHMOVE

sequential data sets IEHMOVE

Number records in a new or old member of a partitioned data set or
PDSE

IEBUPDTE

Password protection add a password IEHPROGM

delete a password IEHPROGM

list passwords IEHPROGM

replace a password IEHPROGM

 Introduction 3

Figure 1 (Page 4 of 4). Tasks and Utility Programs

Task Options
Primary
Utility

Secondary Util-
ities

Print sequential data sets IEBPTPCH IEBGENER,
IEBUPDTE

partitioned data sets or PDSEs IEBPTPCH

selected records IEBPTPCH

mixed strings of double-byte and single-byte char-
acter set data

IEBPTPCH IEBGENER

double-byte character set data IEBPTPCH IEBGENER

Punch a partitioned data set member IEBPTPCH

a sequential data set IEBPTPCH

selected records IEBPTPCH

mixed strings of double-byte and single-byte char-
acter set data

IEBPTPCH IEBGENER

Double-byte character set data IEBPTPCH IEBGENER

Reblock a load module IEBCOPY

a partitioned data set or PDSE IEBCOPY

a sequential data set IEBGENER IEBUPDTE

Re-create a partitioned data set or PDSE IEBCOPY

Rename member of a partitioned data set or PDSE IEBCOPY IEHPROGM

a sequential or partitioned data set, or PDSE IEHPROGM

moved or copied members of a partitioned data set IEHMOVE

Renumber logical records IEBUPDTE

Remove indication of a double-byte character set string by
stripping off enclosing shift-out/shift-in characters

IEBGENER

Replace a password IEHPROGM

logical records IEBUPDTE

records in a member of a partitioned data set or
PDSE

IEBUPDTE

selected members of a PDSE IEBCOPY IEBUPDTE

selected members of a partitioned data set IEBCOPY IEBUPDTE,
IEHMOVE

Scratch a volume table of contents IEHPROGM

data sets IEHPROGM

Uncatalog data sets IEHPROGM

Unload a partitioned data set IEBCOPY IEHMOVE

a sequential data set IEHMOVE

an indexed sequential data set IEBISAM

a PDSE IEBCOPY

Update in place a partitioned data set or PDSE IEBUPDTE

4 DFSMS/MVS V1R5 Utilities

System Utility Programs
System utility programs are used to list or change information related to data sets
and volumes, such as data set names, catalog entries, and volume labels. Most
functions that system utility programs can perform are performed more efficiently
with other programs, such as IDCAMS, ISMF, or DFSMSrmm.

Figure 2 is a list of system utility programs and their purpose.

*The function these programs provide are better performed by newer applications,
such as ISMF or DFSMSrmm or DFSMSdss. IBM continues to ship these programs
for compatibility with the supported older system levels.

Figure 2. System Utility Programs

System Utility
Alternate
Program Purpose

*IEHINITT DFSMSrmm
EDGINERS

To write standard labels on tape volumes

IEHLIST ISMF, PDF
3.4

To list system control data

*IEHMOVE DFSMSdss,
IEBCOPY

To move or copy collections of data

IEHPROGM Access
method ser-
vices, PDF
3.2

To build and maintain system control data

*IFHSTATR DFSMSrmm,
EREP

To select, format, and write information about
tape errors from the IFASMFDP tape

Data Set Utility Programs
You can use data set utility programs to reorganize, change, or compare data at
the data set or record level. These programs are controlled by JCL statements and
utility control statements.

These utilities allow you to manipulate partitioned, sequential or indexed sequential
data sets, or partitioned data sets extended (PDSEs), which are provided as input
to the programs. You can manipulate data ranging from fields within a logical
record to entire data sets.

The data set utilities included in this manual cannot be used with VSAM data sets.
Information about VSAM data sets can be found in DFSMS/MVS Using Data Sets .

Figure 3 is a list of data set utility programs and their use.

 Introduction 5

*The functions these programs provide are better performed by newer applications,
such as ISMF or DFSMSrmm or DFSMSdss. IBM continues to ship these programs
for compatibility with the supported older system levels.

Figure 3. Data Set Utility Programs

Data Set Utility Use

*IEBCOMPR, SuperC, (PDF 3.12) Compare records in sequential or partitioned data
sets, or PDSEs

IEBCOPY Copy, compress, or merge partitioned data sets or
PDSEs; add RLD count information to load modules;
select or exclude specified members in a copy opera-
tion; rename or replace selected members of parti-
tioned data sets or PDSEs

IEBDG Create a test data set consisting of patterned data

IEBEDIT Selectively copy job steps and their associated JOB
statements

IEBGENER or ICEGENER Copy records from a sequential data set or convert a
data set from sequential organization to partitioned
organization

*IEBIMAGE or AMS REPRO Modify, print, or link modules for use with the IBM
3800 Printing Subsystem, the IBM 3262 Model 5, or
the 4248 printer

*IEBISAM Unload, load, copy, or print an ISAM data set

IEBPTPCH or PDF 3.1 or 3.6 Print or punch records in a sequential or partitioned
data set

IEBUPDTE Incorporate changes to sequential or partitioned data
sets, or PDSEs

 Control
System and data set utility programs are controlled by job control and utility control
statements. The job control and utility control statements necessary to use utility
programs are provided in the major discussion of each utility program.

Job Control Statements
You can start a system or data set utility program in the following ways:

� Place job control statements in a file and give the file to JES to run, for
example, by the TSO SUBMIT command.

� Place job control statements, placed in a procedure library and run them with
the MVS operator START command or include them in a JOB with the EXEC
job control statement.

� Use TSO CALL command.

� Use another program which uses the CALL, LINK, or ATTACH macro.

Most JCL examples shown in this book specify parameters used in locating uncata-
loged data sets. With cataloged data sets, the UNIT and VOL=SER parameters are
not necessary. See DFSMS/MVS Using Data Sets for more details on allocating

6 DFSMS/MVS V1R5 Utilities

SMS-managed data sets which can be used with the utilities described in this
manual.

See OS/390 MVS JCL Reference for more information on coding JCL statements.

Sharing Data Sets
Except for VSAM data sets or PDSEs, a data set cannot be updated by more than
one job or user at a time without the risk of damaging the data set. Some data
sets, particularly system data sets (identified by “SYS1”), are always in use. In
order to safely update shared data sets, all but one user must stop updating the
data set. After the update is finished, all users will have to re-access the data set.
Re-accessing the data set is a function of the program using the data set and may
involve closing and reopening the data set, or even freeing and reallocating the
data set. Not all programs may be capable of doing this, so it is not always possible
to safely update a shared data set.

The DISP parameter on the DD statement, or the TSO ALLOCATE command, can
be used to put a lock on a system data set so that you can update the data set.
Specify DISP=OLD whenever you update a data set.

If you code DISP=SHR in your JCL, realize that the data set you are updating may
be simultaneously updated by another user, resulting in an unusable data set.

This problem has been addressed by some components such as Program Manage-
ment (Binder, linkage editor), MVS Allocation (JCL, SVC 99) and ISPF/PDF. Each
component provides its own separate interlock and none of them recognize all the
other interlocks. Therefore there is no totally safe way to update a data set allo-
cated with DISP=SHR.

Partitioned data sets further complicate sharing because they have a directory and
individual members. These sub-parts are not generally protected inside the system
(though ISPF/PDF does provide good protection against changes to members and
the directory made by other ISPF/PDF users).

PDSE (partitioned data sets extended) are designed to avoid sharing problems.
Consider using them in place of partitioned data sets.

DFSMS provides a check for two users opening the same partitioned data set for
output and cancels the second user's open with Abend 213, RC 30. This does not
apply to sequential data sets, and like most interlocks, applies across systems if the
installation took specific actions when activating GRS or other global serialization
tool.

When a volume is shared between different physical systems, (such as between an
MVS system and a VM system with shared DASD) DD statements or TSO ALLOC
commands may not be able to stop a volume from being simultaneously updated
from the two different systems.

 Introduction 7

Utility Control Statements
Utility control statements are used to identify a particular function to be performed
by a utility program and, when required, to identify specific volumes or data sets to
be processed. The utility control statements that a particular utility uses are dis-
cussed in the chapter for that utility.

Utility control statements are usually included in the input stream. However, they
may also be placed in a sequential data set, or in a member of a partitioned data
set or PDSE. In either case, the data set must have fixed or fixed blocked records
with a logical record length of 80.

Note: Some utilities allow exceptions to this rule.

The control statements for the utility programs have the following standard format:

label operation operand comments

The label symbolically identifies the control statement and, with the exception of
system utility program IEHINITT, can be omitted. When included, a name must
begin in the first position of the statement and must be followed by one or more
blanks. The label can contain from 1 to 8 alphanumeric characters. IEBUPDTE
control statements are an exception to this rule. They begin with “./” in positions 1
and 2, with an optional label beginning in position 3.

The operation identifies the type of control statement. It must be preceded and fol-
lowed by one or more blanks.

The operand is made up of one or more keyword parameters, separated by
commas. The operand field must be preceded and followed by one or more blanks.
Commas, parentheses, and blanks can be used only as delimiting characters.

Comments can be written in a utility statement, but they must be separated from
the last parameter of the operand field by one or more blanks.

Continuing Utility Control Statements
Utility control statements are coded on cards or as online input and are contained
in columns 1 through 71. A statement that exceeds 71 characters must be con-
tinued on one or more additional records. A nonblank character must be placed in
column 72 to indicate continuation.

Note: Some utilities allow exceptions to this rule. A utility statement can be inter-
rupted either in column 71 or after any comma.

The continued portion of the utility control statement must begin in column 16 of the
following record.

Note: The IEBPTPCH and IEBGENER utility programs permit certain exceptions
to these requirements (see the applicable program description).

 Restrictions
� Unless otherwise indicated in the description of a specific utility program, a tem-

porary data set can be processed by a utility program only if you specify the
complete name generated for the data set by the system (for example,
DSNAME=SYS95296.T000051.RP001.JOBTEMP.TEMPMOD).

8 DFSMS/MVS V1R5 Utilities

� The utility programs described in this book do not normally support VSAM data
sets. For certain exceptions, refer to the various program descriptions.

� The utility programs described in this book do not support ASCII tape data sets,
with the exception of the IEHINITT program. (Conversion from EBCDIC codes
to ASCII codes will result in loss of data.) Refer to the IEHINITT section for
further information.

 Notational Conventions
A uniform notation describes the syntax of utility control statements. This notation is
not part of the language; it is merely a way of describing the syntax of the state-
ments. The statement syntax definitions in this book use the following conventions:

[] Brackets enclose an optional entry. You may, but need not, include the
entry. Examples are:

 [length]
 [MF=E]

| An OR sign (a vertical bar) separates alternative entries. You must specify
one, and only one, of the entries unless you allow an indicated default.
Examples are:

 [REREAD|LEAVE]
 [length|'S']

{ } Braces enclose alternative entries. You must use one, and only one, of the
entries. Examples are:

 BFTEK={S|A}
 {K|D}
 {address|S|O}

Sometimes alternative entries are shown in a vertical stack of braces. An
example is:

In the example above, you must choose only one entry from the vertical
stack.

. . . An ellipsis indicates that the entry immediately preceding the ellipsis may
be repeated. For example:

 (dcbaddr,[(options)],. . .)

‘ ’ A ‘ ’ indicates that a blank (an empty space) must be present before the
next parameter.

UPPERCASE BOLDFACE
Uppercase boldface type indicates entries that you must code exactly as
shown. These entries consist of keywords and the following punctuation
symbols: commas, parentheses, and equal signs. Examples are:

� CLOSE , , , ,TYPE=T
 � MACRF=(PL,PTC)

 MACRF={{(R[C|P])}
{(W[C|P|L])} {(R[C],W[C])}}

 Introduction 9

UNDERSCORED UPPERCASE BOLDFACE
Underscored uppercase boldface type indicates the default used if you do
not specify any of the alternatives. Examples are:

 � [EROPT={ACC|SKP|ABE }]
 � [BFALN={F|D }]

Lowercase Italic
Lowercase italic type indicates a value to be supplied by you, the user,
usually according to specifications and limits described for each param-
eter. Examples are:

 � number
 � image-id
 � count

keyword=device=list
The term keyword is replaced by VOL, FROM or TO.

The term device is replaced by a generic name, for example, 3380, or an
esoteric name, for example, SYSDA.

For DASD, the term list is replaced by one or more volume serial numbers
separated by commas. When there is more than one volume serial
number, the entire list field must be enclosed in parentheses.

For tapes, the term list is replaced by either one or more “volume serial
number, data set sequence number” pairs. Each pair is separated from the
next pair by a comma. When there is more than one pair, the entire list
field must be enclosed in parentheses; for example:
FROM=3480=(tapeA,1,tapeB,1).

REQUIRED KEYWORDS AND SYMBOLS
Entries shown IN THE FORMAT SHOWN HERE (notice the type of
highlighting just used) must be coded exactly as shown. These entries
consist of keywords and the following punctuation symbols: commas,
parentheses, and equal signs. Examples are:

� CLOSE , , , ,TYPE=T
 � MACRF=(PL,PTC)

Note: The format (the type of highlighting) that is used to identify this
type of entry depends on the display device used to view a
softcopy book. The published hardcopy version of this book dis-
plays this type of entry in uppercase boldface type.

DEFAULT VALUES
Values shown IN THE FORMAT SHOWN HERE (notice the type of
highlighting just used) indicate the default used if you do not specify any
of the alternatives. Examples are:

 � [EROPT={ACC|SKP|ABE }]
 � [BFALN={F|D }]

Note: The format (the type of highlighting) that is used to identify this
type of entry depends on the display device used to view a
softcopy book. The published hardcopy version of this book dis-
plays this type of value in underscored uppercase boldface type.

10 DFSMS/MVS V1R5 Utilities

User Specified Value
Values shown in the format shown here (notice the type of highlighting
just used) indicate a value to be supplied by you, the user, usually
according to specifications and limits described for each parameter.
Examples are:

 � number
 � image-id
 � count

Note: The format (the type of highlighting) that is used to identify this
type of entry depends on the display device used to view a
softcopy book. The published hardcopy version of this book dis-
plays this type of value in lowercase italic type.

Special Referencing Aids
To help you locate the correct utility program for your needs and locate the correct
example of the program for reference two special referencing aids are included in
this publication.

To locate the correct utility program, refer to Figure 1 on page 1 under Guide to
Utility Program Functions.

To locate the correct example, use the figure (called an “example directory”) that
precedes each program's examples. Figure 4 shows a portion of the example
directory for IEBCOPY. The figure shows that IEBCOPY Example 1 is an example
of copying a partitioned data set from one disk volume to another and that
IEBCOPY Example 2 is an example of copying from three input partitioned data
sets to an existing output partitioned data set.

Figure 4. Example Directory

Operation Device Comments Example

COPY Disk Full Copy. The input and output data sets are
partitioned.

1

COPY Disk Multiple input partitioned data sets. Fixed-
blocked and fixed-record formats.

2

 Introduction 11

12 DFSMS/MVS V1R5 Utilities

 IEBCOMPR

IEBCOMPR (Compare Data Sets) Program

Note: Use the SuperC utility instead of IEBCOMPR. SuperC is part or ISPF/PDF
and the High Level Assembler Toolkit Feature. SuperC can be processed in
the foreground as well as in batch and its report is more useful.

IEBCOMPR is a data set utility used to compare two sequential data sets, two par-
titioned data sets or two PDSEs at the logical record level to verify a backup copy.
Fixed, variable, or undefined records from blocked or unblocked data sets or
members can also be compared. However, you should not use IEBCOMPR to
compare load modules.

Two sequential data sets are considered equal, that is, are considered to be iden-
tical, if:

� The data sets contain the same number of records, and
� Corresponding records and keys are identical

Two partitioned data sets or two PDSEs are considered equal if:

� Corresponding members contain the same number of records
� Note lists are in the same position within corresponding members
� Corresponding records and keys are identical
� Corresponding directory user data fields are identical

If all these conditions are not met for a specific type of data set, those data sets are
considered unequal. If records are unequal, the record and block numbers, the
names of the DD statements that define the data sets, and the unequal records are
listed in a message data set. Ten successive unequal comparisons stop the job
step, unless you provide a routine for handling error conditions.

Load module partitioned data sets that reside on different types of devices should
not be compared. Under most circumstances, the data sets will not compare as
equal.

Partitioned data sets or PDSEs can be compared only if all the names in one or
both of the directories have counterpart entries in the other directory. The compar-
ison is made on members identified by these entries and corresponding user data.

Figure 5 shows the directories of two partitioned data sets. Directory 2 contains
corresponding entries for all the names in Directory 1; therefore, the data sets can
be compared.

Directory 1
A B C D E F G H

I J K L

Directory 2

A B C D G L

Figure 5. Partitioned Directories Whose Data Sets Can Be Compared Using IEBCOMPR

 Copyright IBM Corp. 1979, 1999 13

 IEBCOMPR

Figure 6 on page 14 shows the directories of two partitioned data sets. Each direc-
tory contains a name that has no corresponding entry in the other directory; there-
fore, the data sets cannot be compared, and the job step will be ended.

Figure 6. Partitioned Directories Whose Data Sets Cannot Be Compared Using IEBCOMPR

User exits are provided for optional user routines to process user labels, handle
error conditions, and modify source records. See Appendix C, “Specifying User
Exits with Utility Programs” on page 389 for a discussion of the linkage conventions
to be followed when user routines are used.

If IEBCOMPR is invoked from an application program, you can dynamically allocate
the data sets by issuing SVC 99 before calling IEBCOMPR.

Input and Output
IEBCOMPR uses the following input:

| � Two sequential data sets, partitioned data sets, PDSEs, or HFS files to be
| compared.

� A control data set that contains utility control statements. This data set is
required if the input data sets are partitioned or PDSEs, or if user routines are
used.

IEBCOMPR produces as output a message data set that contains informational
messages (for example, the contents of utility control statements), the results of
comparisons, and error messages.

See Appendix A for IEBCOMPR return codes.

 Control
IEBCOMPR is controlled by job and utility control statements. The job control state-
ments are required to process IEBCOMPR and to define the data sets that are
used and produced by IEBCOMPR. The utility control statements are used to indi-
cate the input data set organization (that is, sequential, partitioned, or PDSE), to
identify any user routines that may be provided, and to indicate if user labels are to
be treated as data.

14 DFSMS/MVS V1R5 Utilities

 IEBCOMPR

Job Control Statements
Figure 7 shows the job control statements for IEBCOMPR.

One or both of the input data sets can be passed from a preceding job step.

You can compare data sets that reside on different device types. However, you
should not compare load module libraries that reside on different device types. You
can also compare sequential data sets that were written at different densities.

The SYSPRINT DD statement must be present for each use of IEBCOMPR. The
block size specified in the SYSPRINT DD statement must be a multiple of 121.

The SYSIN DD statement is required. The block size specified in the SYSIN DD
statement must be a multiple of 80.

The input data sets must have the same logical record length. Otherwise, a com-
parison of the two data sets will show them to be unequal. The block sizes of the
input data sets can differ. For fixed block (FB) data sets, block sizes must be multi-
ples of the logical record length.

Figure 7. Job Control Statements for IEBCOMPR

Statement Use

JOB Starts the job.

EXEC Specifies the program name (PGM=IEBCOMPR) or, if the job control
statements reside in a procedure library, the procedure name.

SYSPRINT DD Defines a sequential data set which will be used for messages
produced by IEBCOMPR. This data set can be written to a system
output device (SYSOUT), a tape volume, a direct access volume, TSO
terminal, or dummy (DUMMY DD).

SYSUT1 DD Defines an input data set to be compared.

SYSUT2 DD Defines an input data set to be compared.

SYSIN DD Defines the control data set or specifies DUMMY if the input data sets
are sequential and no user routines are used. The control data set
normally resides in the input stream; however, it can be defined as a
member within a library of partitioned members.

Utility Control Statements
The utility control statements used to control IEBCOMPR are given in Figure 8.

Continuation requirements for utility control statements are described in “Continuing
Utility Control Statements” on page 8.

Figure 8. IEBCOMPR Utility Control Statements

Statement Use

COMPARE Indicates the organization of a data set.

EXITS Identifies user exit routines to be used.

LABELS Indicates if user labels are to be treated as data by IEBCOMPR.

 IEBCOMPR (Compare Data Sets) Program 15

 IEBCOMPR

 COMPARE Statement
You use the COMPARE statement to indicate the organization of the data sets you
want to compare.

The COMPARE statement, if included, must be the first utility control statement.
COMPARE is required if you use the EXITS or LABELS statement or if the input
data sets are partitioned data sets or PDSEs.

The syntax of the COMPARE statement is:

where:

TYPORG={PS|PO}
specifies the organization of the input data sets. The values that can be coded
are:

PS specifies that the input data sets are sequential data sets. This is the
default.

PO specifies that the input data sets are partitioned data sets or PDSEs.

Figure 9. Syntax of COMPARE statement

[label] COMPARE TYPORG={PS|PO}

 EXITS Statement
You use the EXITS statement to identify any exit routines you want to use. If an
exit routine is used, the EXITS statement is required. If you use more than one
EXITS statement, IEBCOMPR will only use the last EXITS statement. All others will
be ignored. For a discussion of the processing of user labels as data set descrip-
tors, see “Processing User Labels” on page 394.

The syntax of the EXITS statement is:

where:

INHDR=routinename
specifies the name of the routine that processes user input header labels.

INTLR=routinename
specifies the name of the routine that processes user input trailer labels.

ERROR=routinename
specifies the name of the routine that is to receive control for error handling
after each unequal comparison. If this parameter is omitted and ten consecutive
unequal comparisons occur while IEBCOMPR is comparing sequential data
sets, processing is stopped; if the input data sets are partitioned or PDSE,
processing continues with the next member.

Figure 10. Syntax of EXITS statement

[label] EXITS [INHDR=routinename]
[,INTLR= routinename]
[,ERROR=routinename]
[,PRECOMP=routinename]

16 DFSMS/MVS V1R5 Utilities

 IEBCOMPR

PRECOMP=routinename
specifies the name of the routine that processes logical records (physical
blocks in the case of variable spanned (VS) or variable blocked spanned (VBS)
records longer than 32K bytes) from either or both of the input data sets before
they are compared.

 LABELS Statement
You use the LABELS statement to specify whether user labels are to be treated as
data by IEBCOMPR. For a discussion of this option, refer to “Processing User
Labels” on page 394.

If you use more than one LABELS statement, IEBCOMPR will only use the last
LABELS statement. All others will be ignored.

The syntax of the LABELS statement is:

DATA={YES |NO|ALL|ONLY}
specifies if user labels are to be treated as data. The values that can be coded
are:

YES specifies that any user labels that are not rejected by a user's label
processing routine are to be treated as data. Processing of labels as
data stops in compliance with standard return codes. YES is the
default.

NO specifies that user labels are not to be treated as data.

ALL specifies that all user labels are to be treated as data. A return code of
16 causes IEBCOMPR to complete processing of the remainder of the
group of user labels and to end the job step.

ONLY specifies that only user header labels are to be treated as data. User
header labels are processed as data regardless of any return code.
The job ends upon return from the OPEN routine.

Note: LABELS DATA=NO must be specified to make IBM standard user label
(SUL) exits inactive when input/output data sets with nonstandard labels
(NSL) are to be processed.

Figure 11. Syntax of LABEL statement

[label] LABELS [DATA={YES |NO|ALL|ONLY}]

 IEBCOMPR Examples
The examples in Figure 12 illustrate some of the uses of IEBCOMPR. The
numbers in the “Example” column refer to examples that follow.

Examples that use disk or tape in place of actual device names or numbers must
be changed before use. The actual device names or numbers depend on how your
installation has defined the devices to your system.

 IEBCOMPR (Compare Data Sets) Program 17

 IEBCOMPR

Figure 12. IEBCOMPR Example Directory

Operation
Data Set Organiza-
tion Devices Comments Example

COMPARE Partitioned Disk No user routines. Blocked input. 6

COMPARE PDSE Disk No user routines. SMS-managed
data sets.

8

COMPARE Sequential 9-track Tape No user routines. Blocked input. 1

COMPARE Sequential 7-track Tape No user routines. Blocked input. 2

COMPARE Sequential 7-track Tape
and 9-track
Tape

User routines. Blocked input. Dif-
ferent density tapes.

3

COMPARE Sequential System input
stream,
9-track Tape

No user routines. Blocked input. 4

COPY (using
IEBGENER) and
COMPARE

Sequential Disk or Tape No user routines. Blocked input. Two
job steps; data sets are passed to
second job step.

5

COPY (using
IEBCOPY) and
COMPARE

Partitioned Disk User routine. Blocked input. Two job
steps; data sets are passed to
second job step.

7

Example 1: Compare Data Sets that Reside on Tape
In this example, two sequential data sets that reside on 9-track tape volumes are
compared.

 //TAPETAPE JOB ...
 // EXEC PGM=IEBCOMPR
 //SYSPRINT DD SYSOUT=A
 //SYSUT1 DD DSNAME=SET1,UNIT=tape,LABEL=(,NL),
 // DCB=(RECFM=FB,LRECL=8ð,BLKSIZE=2ððð),
 // DISP=(OLD,KEEP),VOLUME=SER=ðð1234
 //SYSUT2 DD DSNAME=SET2,UNIT=tape,LABEL=(,NL),
 // DCB=(RECFM=FB,LRECL=8ð,BLKSIZE=1ð4ð),
 // DISP=(OLD,KEEP),VOLUME=SER=ðð1235
 //SYSIN DD DUMMY
 /\

The job control statements are discussed below:

� SYSUT1 DD defines an input data set (SET1), which resides on an unlabeled
9-track tape volume.

� SYSUT2 DD defines an input data set (SET2), which resides on an unlabeled
9-track tape volume.

� SYSIN DD defines a dummy data set. Because no user routines are used and
the input data sets have a sequential organization, utility control statements are
not necessary.

18 DFSMS/MVS V1R5 Utilities

 IEBCOMPR

Example 2: Compare Sequential Data Sets that Reside on Tape
In this example, two sequential data sets that reside on 7-track tape volumes are
compared.

 //TAPETAPE JOB ...
 // EXEC PGM=IEBCOMPR
 //SYSPRINT DD SYSOUT=A
 //SYSUT1 DD DSNAME=SET1,LABEL=(2,SUL),DISP=(OLD,KEEP),
 // VOL=SER=ðð1234,DCB=(DEN=2,RECFM=FB,LRECL=8ð,
 // BLKSIZE=2ððð,TRTCH=C),UNIT=tape
 //SYSUT2 DD DSNAME=SET2,LABEL=(,SUL),DISP=(OLD,KEEP),
 // VOL=SER=ðð1235,DCB=(DEN=2,RECFM=FB,LRECL=8ð,
 // BLKSIZE=2ððð,TRTCH=C),UNIT=tape
 //SYSIN DD \
 COMPARE TYPORG=PS
 LABELS DATA=ONLY
 /\

The control statements are discussed below:

� SYSUT1 DD defines an input data set, SET1, which resides on a labeled,
7-track tape volume. The blocked data set was originally written at a density of
800 bits per inch (DEN=2) with the data converter on (TRTCH=C).

� SYSUT2 DD defines an input data set, SET2, which is the first or only data set
on a labeled, 7-track tape volume. The blocked data set was originally written
at a density of 800 bits per inch (DEN=2) with the data converter on
(TRTCH=C).

� SYSIN DD defines the control data set, which follows in the input stream.

� COMPARE TYPORG=PS specifies that the input data sets are sequentially
organized.

� LABELS DATA=ONLY specifies that user header labels are to be treated as
data and compared. All other labels on the tape are ignored.

Example 3: Compare Sequential Data Sets Written at Different
Densities

In this example, two sequential data sets written at different densities on different
tape units are compared.

 //TAPETAPE JOB ...
 // EXEC PGM=IEBCOMPR
 //SYSPRINT DD SYSOUT=A
 //SYSUT1 DD DSNAME=SET1,LABEL=(,SUL),DISP=(OLD,KEEP),
 // VOL=SER=ðð1234,DCB=(DEN=1,RECFM=FB,LRECL=8ð,
 // BLKSIZE=32ð,TRTCH=C),UNIT=tape
 //SYSUT2 DD DSNAME=SET2,LABEL=(,SUL),DISP=(OLD,KEEP),
 // DCB=(RECFM=FB,LRECL=8ð,BLKSIZE=64ð),
 // UNIT=tape,VOLUME=SER=ðð1235
 //SYSIN DD \
 COMPARE TYPORG=PS
 EXITS INHDR=HDRS,INTLR=TLRS
 LABELS DATA=NO
 /\

The control statements are discussed below:

 IEBCOMPR (Compare Data Sets) Program 19

 IEBCOMPR

� SYSUT1 DD defines an input data set, SET1, which is the first or only data set
on a labeled, 7-track tape volume. The blocked data set was originally written
at a density of 556 bits per inch (DEN=1) with the data converter on
(TRTCH=C).

� SYSUT2 DD defines an input data set, SET2, which is the first or only blocked
data set on a labeled tape volume. In this example, assume SYSUT2 is on a
9-track tape drive.

� SYSIN DD defines the control data set, which follows in the input stream.

� COMPARE TYPORG=PS specifies that the input data sets are sequentially
organized.

� EXITS identifies the names of routines to be used to process user input header
labels and trailer labels.

� LABELS DATA=NO specifies that the user input header and trailer labels for
each data set are not to be compared.

Example 4: Compare Sequential Data Sets—Card and Tape Input
In this example, two sequential data sets (card input and tape input) are compared.

 //CARDTAPE JOB ...
 // EXEC PGM=IEBCOMPR
 //SYSPRINT DD SYSOUT=A
 //SYSIN DD DUMMY
 //SYSUT2 DD UNIT=tape,VOLUME=SER=ðð1234,LABEL=(,NL),
 // DCB=(RECFM=FB,LRECL=8ð,BLKSIZE=2ððð),
 // DISP=(OLD,KEEP)
 //SYSUT1 DD DATA

(input data set)

 /\

The control statements are discussed below:

� SYSIN DD defines a dummy control data set. Because no user routines are
provided and the input data sets are sequential, utility control statements are
not necessary.

� SYSUT2 DD defines an input data set, which resides on an unlabeled, 9-track
tape volume.

� SYSUT1 DD defines a system input stream data set (card input).

Example 5: Copy and Compare Sequential Data Set in Two Job Steps
In this example, a sequential disk or tape data set is copied and compared in two
job steps.

20 DFSMS/MVS V1R5 Utilities

 IEBCOMPR

| //TAPETAPE JOB ...
| //STEPA EXEC PGM=IEBGENER
| //SYSPRINT DD SYSOUT=A
| //SYSUT1 DD DSN=WAREHOUS.COPYSET1,DISP=(OLD,PASS),
| //SYSUT2 DD DSNAME=WAREHOUS.COPYSET2,DISP=(,PASS),LABEL=(,SL),
| // DCB=(RECFM=FB,LRECL=8ð,BLKSIZE=64ð),
| // UNIT=tape,VOLUME=SER=ðð1235
| //SYSIN DD DUMMY
| //STEPB EXEC PGM=IEBCOMPR
| //SYSPRINT DD SYSOUT=A
| //SYSUT1 DD DSNAME=\.STEPA.SYSUT1,DISP=(OLD,KEEP)
| //SYSUT2 DD DSNAME=\.STEPA.SYSUT2,DISP=(OLD,KEEP)
| //SYSIN DD DUMMY

The first job step copies the data set and passes the original and copied data sets
to the second job step. The second job step compares the two data sets.

The control statements for the IEBCOMPR job step are discussed below:

� SYSUT1 DD defines an input data set passed from the preceding job step
(COPYSET1). The data set resides on a labeled tape volume.

� SYSUT2 DD defines an input data set passed from the preceding job step
(COPYSET2). The data set, which was created in the preceding job step,
resides on a labeled tape volume.

� SYSIN DD defines a dummy control data set. Because the input is sequential
and no user exits are provided, no utility control statements are required.

Example 6: Compare Two Partitioned Data Sets
In this example, two partitioned data sets are compared.

 //DISKDISK JOB ...
 //STEP1 EXEC PGM=IEBCOMPR
 //SYSPRINT DD SYSOUT=A
 //SYSUT1 DD DSNAME=PDSSET1,UNIT=disk,DISP=SHR,
 // DCB=(RECFM=FB,LRECL=8ð,BLKSIZE=2ððð),
 // VOLUME=SER=111112
 //SYSUT2 DD DSNAME=PDSSET2,UNIT=disk,DISP=SHR,
 // DCB=(RECFM=FB,LRECL=8ð,BLKSIZE=2ððð),
 // VOLUME=SER=111113
 //SYSIN DD \
 COMPARE TYPORG=PO
 /\

The control statements are discussed below:

� SYSUT1 DD defines an input partitioned data set, PDSSET1. The blocked data
set resides on a disk volume.

� SYSUT2 DD defines an input partitioned data set, PDSSET2. The blocked data
set resides on a disk volume.

� SYSIN DD defines the control data set, which follows in the input stream.

� COMPARE TYPORG=PO indicates that the input data sets are partitioned.

 IEBCOMPR (Compare Data Sets) Program 21

 IEBCOMPR

Example 7: Copy and Compare Partitioned Data Set in Two Job Steps
In this example, a partitioned data set is copied and compared in two job steps.

| //DISKDISK JOB ...
| //STEPA EXEC PGM=IEBCOPY
| //SYSPRINT DD SYSOUT=A
| //SYSUT1 DD DSNAME=MAINDB.LOG.OLDSET,DISP=SHR
| //SYSUT2 DD DSNAME=NEWMEMS,UNIT=disk,DISP=(,PASS),
| // VOLUME=SER=111113,SPACE=(TRK,(5,5,5)),
| // DCB=(RECFM=FB,LRECL=8ð,BLKSIZE=64ð)
| //SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(1))
| //SYSUT4 DD UNIT=SYSDA,SPACE=(TRK,(1))
| //SYSIN DD \
| COPY OUTDD=SYSUT2,INDD=SYSUT1
| SELECT MEMBER=(A,B,D,E,F)
| /\
| //STEPB EXEC PGM=IEBCOMPR
| //SYSPRINT DD SYSOUT=A
| //SYSUT1 DD DSNAME=OLDSET,DISP=(OLD,KEEP)
| //SYSUT2 DD DSNAME=NEWMEMS,DISP=(OLD,KEEP)
| //SYSIN DD \
| COMPARE TYPORG=PO
| EXITS ERROR=SEEERROR
| /\

The first job step copies the data set and passes the original and copied data sets
to the second job step. The second job step compares the two data sets.

The control statements for the IEBCOMPR job step are discussed below:

� SYSUT1 DD defines a blocked input data set (MAINDB.LOG.OLDSET) that is
passed from the preceding job step. The data set resides on a disk or tape
volume.

� SYSUT2 DD defines a blocked input data set (MAINDB.LOG.NEWMEMS) that
is passed from the preceding job step. The data set resides on a disk volume.

� SYSIN DD defines the control data set, which follows in the input stream.

� COMPARE TYPORG=PO specifies partitioned organization.

� EXITS specifies that a user error routine, SEEERROR, is to be used.

Because the input data set names are not identical, the data sets can be retrieved
by their data set names.

Example 8: Compare Two PDSEs
In this example, two PDSEs are compared.

 //DISKDISK JOB ...
 // EXEC PGM=IEBCOMPR
 //SYSPRINT DD SYSOUT=A
 //SYSUT1 DD DSN=PDSE1,DISP=SHR
 //SYSUT2 DD DSN=PDSE2,DISP=SHR
 //SYSIN DD \
 COMPARE TYPORG=PO
 /\

22 DFSMS/MVS V1R5 Utilities

 IEBCOMPR

Because a PDSE must be managed by the Storage Management Subsystem, you
need not specify the UNIT or VOLUME parameters.

The control statements are discussed below:

� SYSUT1 DD and SYSUT2 DD define input PDSEs, PDSE1, and PDSE2.
Because no DCB values are specified, the DCB values that were specified in
creating the data sets will be used.

� SYSIN DD defines the control data set, which follows in the input stream.

� COMPARE TYPORG=PO indicates that the input data sets are PDSEs.

 IEBCOMPR (Compare Data Sets) Program 23

 IEBCOMPR

24 DFSMS/MVS V1R5 Utilities

 IEBCOPY

IEBCOPY (Library Copy) Program

IEBCOPY is a data set utility used to copy or merge members between one or
more partitioned data sets, or partitioned data sets extended (PDSE), in full or in
part. You can also use IEBCOPY to create a backup of a partitioned data set into a
sequential data set (called an unload data set or PDSU), and to copy members
from the backup into a partitioned data set.

IEBCOPY can be used to:

� Make a copy of a partitioned data set or PDSE.

� Merge partitioned data sets (except when unloading).

� Create a sequential form of a partitioned data set or PDSE for a back up or
transport.

� Reload one or more members from a PDSU into a partitioned data set or
PDSE.

� Select specific members of a partitioned data set or PDSE to be copied,
loaded, or unloaded.

� Replace members of a partitioned data set or PDSE.

| � Rename selected members of a partitioned data set or PDSE when copied.

� Exclude members from a data set to be copied, unloaded, or loaded. (Except
on COPYGRP.)

� Compress a partitioned data set in place.

� Upgrade a load module for faster loading by MVS program fetch.

� Copy and reblock load modules.

� Convert load modules in a partitioned data set to program objects in a PDSE
when copying a partitioned data set to a PDSE.

� Convert a partitioned data set to a PDSE or a PDSE to a partitioned data set.

� Copy to or from a PDSE data set, a member and its aliases together as a
group (COPYGRP).

| In addition, IEBCOPY automatically lists the number of unused directory blocks and
| the number of unused tracks available for member records if the output data set is
| a PDS.

| Note: For important information on shared partitioned data sets see “Job Control
| Statements” on page 6.

Converting Load Modules to Program Objects or the Reverse
Program objects are created automatically when load modules are copied into a
PDSE. Likewise, program objects are automatically converted back to load modules
when they are copied into a partitioned data set. Note that some program objects
cannot be converted into load modules because they use features of program
objects that do not exist in load modules. See the DFSMS/MVS Program Manage-
ment for more information about differences between program objects and load
modules.

 Copyright IBM Corp. 1979, 1999 25

 IEBCOPY

IEBCOPY is not able to directly convert between program objects and load
modules when loading or unloading a PDSE or partitioned data set. A load opera-
tion can only reload load modules into partitioned data sets or reload program
objects into a PDSE. Unloading a partitioned data set can only place load modules
into the unload data set. Similarly, unloading a PDSE can only place program
objects into the unload data set.

Therefore, to convert an unloaded load module into a program object, reload the
load module into a partitioned data set and then copy the partitioned data set to a
PDSE. To convert a program object into an unloaded load module, copy the PDSE
to a partitioned data set and then unload the partitioned data set.

If your partitioned data set contains both load modules and data members, then
you will have to convert the partitioned data set into two separate PDSEs using the
method described above—one for program objects and the second for data
members.

Converting Partitioned Data Sets to PDSEs
You can use IEBCOPY to convert partitioned data sets to PDSEs.

To convert a partitioned data set to a PDSE, create a PDSE and copy the parti-
tioned data set into the new PDSE. This can be accomplished with one use of
IEBCOPY.

You cannot convert a partitioned data set that has any of the following features:

� Both load modules and nonload modules in the same partitioned data set.
Individual members of a partitioned data set can be converted by copying them
into two separate PDSEs, the first for data and the second for program objects.

� Note lists. Load modules that contain note lists can be placed into PDSEs
because they are converted automatically into program objects.

� Nonzero key lengths in the members.

� Track overflow. If you want to convert a partitioned data set that has the track
overflow feature, you can do so if the track overflow feature is not needed for
your application. To convert the data set, first copy it to a partitioned data set
that doesn't have the track overflow feature, then copy that data set to a PDSE.

Copying Data Sets
IEBCOPY can be used to totally or partially copy a partitioned data set from one
direct access volume to another. In addition, a data set can be copied to its own
volume, provided its data set name is changed. (If the data set name is not
changed, IEBCOPY interprets the request as a compress-in-place.)

When you use IEBCOPY to copy a PDSE to a PDSE, either volume to volume or
to its own volume, all DDM attributes are also copied.

Members copied into a partitioned data set are not physically reordered; members
are copied in the physical order in which they occur in the original data set.

26 DFSMS/MVS V1R5 Utilities

 IEBCOPY

Merging Data Sets
Merging data sets is done by copying or loading the additional members to an
existing partitioned data set. The merge operation (ordering of the directory of the
output data set) is automatically performed by IEBCOPY.

Increasing Directory Space for a Partitioned Data Set
IEBCOPY cannot increase the number of directory blocks in a partitioned data set.
(A PDSE directory automatically expands as needed.) If you are not sure there will
be enough directory blocks in the output partitioned data set you are merging to,
then you should expand the output data set directory space before beginning the
merge operation.

Use IEHLIST to determine how much directory space remains in a partitioned data
set. If more blocks are needed, this procedure will extend most data sets:

1. Rename the data set.
2. Allocate a new data set with enough space and directory blocks.
3. Copy the renamed data set to the newly allocated data set.
4. Delete the renamed data set (or save it as a backup).

Unloading (Backing up) Data Sets
IEBCOPY can be used to create a backup copy of a partitioned data set by copying
(unloading) it to a sequential data set on DASD, tape, or other device supported by
QSAM.

IEBCOPY creates an unload data set when you specify physical sequential organ-
ization (DSORG=PS) for the output data set. To create a partitioned data set,
specify DSORG=PO and DSNTYPE=PDS or DSNTYPE=LIBRARY.

Note: If you do not explicitly state the DSORG, it might be set opposite to your
intention by ACS routines or other JCL parameters. For example, if you
specify LIKE= or DCB= or a model DSCB and omit the DSORG, then what-
ever DSORG the referenced object has will be implicitly added to your DD
statement. Always specify a DSORG if you are not sure what will be taken
from a referenced object.

Attention: Do not change the DCB parameters of an unload data set after
IEBCOPY finishes creating it, or IEBCOPY might not be able to reload it.

To unload more than one partitioned data set to the same tape volume in one exe-
cution of IEBCOPY, multiple copy operations must be used and multiple sequential
data sets must be allocated to successive files on the tape.

IEBCOPY can copy a PDSU to a PDSU directly without the need to reload it to a
PDS and then unload the PDS to create the new PDSU. If a selective copy is not
required then it will be faster to use IEBGENER to copy the PDSU to a new PDSU.

Only a COPY operation can create an unload data set; COPYMOD cannot.

 IEBCOPY (Library Copy) Program 27

 IEBCOPY

Copying Directory Information between a Partitioned Data Set
and a PDSE
The PDSE directory can contain attributes in addition to those traditionally kept in a
partitioned data set directory entry.

Some PDSE extended attributes are recorded on an unload data set and will be
reloaded when the target is a PDSE.

If you reload an unloaded PDSE that contains program objects to a partitioned data
set, an error message is issued and the operation fails.

Information kept as user data in a partitioned data set directory, for example, PDF
statistics, will move to a PDSE directory and back from a PDSE directory to a parti-
tioned data set directory without change.

Loading or Copying Unload Data Sets
Using IEBCOPY, you can re-create a partitioned data set from an unloaded copy of
a partitioned data set by copying the sequential (unloaded) data set to a partitioned
data set. A partitioned data set may be loaded from an unloaded PDSE if it does
not contain program objects, and a PDSE may be loaded from an unloaded parti-
tioned data set if it does not contain load modules.

Note: A load operation cannot convert unloaded load modules to program objects
or program objects to unloaded load modules.

You can create a single partitioned data set from multiple input sequential
(unloaded) data sets.

For unload and load operations, requests are handled in the same way as for a
copy operation. You can choose to process specific members and to rename them.

A partitioned data set in the unload format will have a variable spanned record
format. When the unload data set is subsequently loaded, the output data set will
have the same characteristics it had before the unload operation, unless you
provide overriding characteristics when you reload the data set.

IEBCOPY Unload Data Set DCB Parameters
An unload data set is always a variable spanned record format with sequential
organization, (RECFM=VS and DSORG=PS).

The logical record length of the unload data set is intended to hold a block from the
input data set plus a header, with these considerations:

1. The LRECL is calculated as being the larger of:

a. 280 bytes, or
b. 16 bytes + the block size + the key length of the input data set.

2. If the LRECL exceeds 32760, it is reduced to 32760.

Note: Applications reading an unload data set should be aware that for
RECFM=VS data sets, the actual length of an assembled logical record
could exceed 32760 bytes, even if the LRECL was reduced to 32760 by
this step.

28 DFSMS/MVS V1R5 Utilities

 IEBCOPY

3. If the user supplies an LRECL larger than the one calculated here, it will be
placed in the data set label; however, the size of the logical record that
IEBCOPY creates will not be increased.

The block size (BLKSIZE) for an unload data set is determined by the following
steps:

1. The initial block size is set to the block size supplied by the user, or if the user
did not supply a block size, it is calculated as the LRECL plus 4.

2. If the block size is less than 284, it is increased to 284.

3. If the block size exceeds 32760, it is reduced to 32760.

4. The block size value is then compared with the largest block size acceptable to
the output device. If the output device capacity is smaller then the block size, it
is set to the maximum allowed for the output device.

Because the unload data set is unblocked, increasing the block size beyond LRECL
plus 4 will not result in longer physical records or better utilization.

The block size is stored in the first control record (COPYR1) and used at load time.
If the block size of the unload data set is changed after it is created, IEBCOPY
might not be able to reload it.

Note: Do not set the PDSU block size equal to the PDS block size or your PDSU
will have very poor space utilization and performance. Let IEBCOPY pick
the block size or choose a PDSU block size 20 bytes greater than the PDS
block size.

Selecting Members to be Copied, Unloaded, or Loaded
Select specific members to be processed from one or more data sets by coding a
SELECT statement to name the members. Alternatively, all members but a specific
few can be designated by coding an EXCLUDE statement to name members not to
be processed.

You cannot use both a SELECT and an EXCLUDE statement in the same copy
operation (same set of input ddnames).

A maximum of eight characters can be given for the member or alias name on a
copy operation.

Selected members are searched for in a low-to-high (a-to-z) collating sequence,
regardless of the order in which they are specified on the SELECT statement;
however, they are copied in the same physical sequence in which they appear on
the input partitioned data set or PDSE.

Once a member designated in a SELECT statement is found in an input data set,
no search is made for it on any subsequent input data set. When all of the selected
members are found, the operation ends, even if all data sets have not yet been
processed.

Example:

If members A and B are specified and A is found on the first of three input data
sets, it is not searched for again when the second and third data sets are
searched.

 IEBCOPY (Library Copy) Program 29

 IEBCOPY

If B is found on the second input data set, the operation is successfully ended
after the second input data set has been processed, and the third input data
set is never examined.

Excluding Members from a Copy Operation
Members from one or more input data sets can be excluded from a copy, unload,
or load operation. The excluded member is searched for on every input data set in
the copy, unload, or load operation and is always omitted. Members are excluded
from the input data sets named on an INDD statement that precedes the EXCLUDE
statement.

A maximum of eight characters can be given for the member or alias name on a
copy operation.

Note: EXCLUDE is not allowed for COPYGRP.

The replace option can be specified on the data set level in an exclusive copy or
load, in which case, nonexcluded members on the input data set replace identically
named members on the output data set. See “Replacing Members in a Data Set”
on page 31 for more information on the replace option.

Copying Members That Have Alias Names (COPY Statement)
This topic discusses using the COPY statement for copying a PDS, PDSU, or
PDSE that has members with alias names. The COPYGRP statement is recom-
mended for copying program objects. See “Copying Program Objects (COPYGRP
Statement)” on page 32 for information on copying program objects.

Note: If the COPY statement is used to copy program objects, errors can occur.

� If you are copying an entire data set to a new data set (one that has no
members before the copy operation), all members and their aliases will be
copied, and they will have the same relationship to one another as they had on
the original data set.

� If you are merging a data set with another data set, no members or aliases on
the output data set will be changed unless you specify that input members are
to replace output members.

Example:

In all instances, if you have a member A with alias B on your input data
set, and a member C with alias B on your output data set, if you do not
indicate replacement, member A will be copied over, but the alias name B
will continue to refer to C. If you do indicate replacement, B will be copied
as an alias of member A in the newly merged data set.

� When selectively copying from a partitioned data set, you must specify every
name that you want copied, including their aliases.

Example:

If you are selecting member A, and member A has the aliases B and C, to
copy all three names you must specify SELECT MEMBER=(A,B,C). This
will result in one copy of the data for that member, and all three names
placed in the directory and associated with that member data.
If you specify SELECT MEMBER=(A,C). This will result in one copy of the
data for that member, and two names, A and C, placed in the directory and
associated with that member data.

30 DFSMS/MVS V1R5 Utilities

 IEBCOPY

� When copying to or from a PDSE, you must specify the member's name. An
alias will not become the member name in the output data set.

� If you are exclusively copying a data set (using the EXCLUDE statement), you
must specify not only a member's name, but also all of its alias names to
exclude the member data from the copy operation.

Example:

If you want to exclude member A from the copy operation, and A has the
alias names B and C, you must specify EXCLUDE MEMBER=(A,B,C). If
you specify only MEMBER=A, then the member is copied to the output data
set with the alias names B and C.

� The rules for replacing or renaming members apply to both aliases and
members; no distinction is made between them.

Replacing Members in a Data Set
You can use IEBCOPY's COPY or COPYGRP statement to replace members on
an output partitioned data set or PDSE. The explanations in this topic are for the
COPY statement. See “Copying Program Objects (COPYGRP Statement)” on
page 32 for an explanation of replacing members using COPYGRP.

With the COPY statement:

� You can specify replacement on the data set level. In this case, every member
of an input data set will be copied to the output data set. Each member on the
output data set that has a name identical to the name of a member on the input
data set will be replaced.

� You can indicate replacement on the member level. In this case, you can indi-
cate that a particular member of the input data set is to replace an identically
named member of the output data set, and indicate that another member is to
be copied only if it is not already present on the output data set.

When you specify replacement on the member level, you can also rename an
input member. The output data set directory is searched for the new name to
see if the member should be copied. For instance, you could rename member
A to B, and have it replace member B on the output data set.

Specifying Replacement on the Data Set Level: When you merge partitioned
data sets, or load an unload data set into a partitioned data set that already has
members, the input and output data sets might have members with the same
names. Under normal processing, these input members will not replace the output
members that have their names. To specify that all input members are to be copied
to the output data set, and thus replace any output members of the same name,
use the replace (R) option on an INDD or COPY statement.

When replace (R) is specified on the data set level, the input data is processed as
follows:

� In a full copy or load process, all members in an input data set are copied to an
output partitioned data set; members whose names already exist in the output
partitioned data set are replaced by members copied or loaded from the input
data set.

� In a selective copy or load process, all selected input members will be copied
to the output data set, replacing any identically named output data set
members. Specifying replace (R) on the data set level when performing a

 IEBCOPY (Library Copy) Program 31

 IEBCOPY

selective copy relieves you of the need to specify replace (R) for each member
you want copied.

� In an exclusive copy process, all nonexcluded members on the input data sets
are copied or loaded to an output partitioned data set, replacing those
members with duplicate names on the output partitioned data set.

Specifying Replacement on the Member Level: When you specify the name of
a member to be copied in the MEMBER operand of the SELECT statement, specify
the replace (R) option for input members which have identically named members in
the output data set. In this way, you can copy many members from an input data
set, but allow only a few of them to replace members in the output data set.

Processing Considerations for Replacing Members: There are differences
between full, selective, and exclusive copy or load processing. These differences
should be remembered when specifying the replace (R) option on either the data
set or member level, and when the output data set contains member names
common to some or all the input data sets being copied or loaded. These differ-
ences are:

� When a full copy or load is performed, the output partitioned data set contains
the replacing members that were on the last input data set copied.

� When a selective copy or load is performed, the output partitioned data set
contains the selected replacing members that were found on the earliest input
data set searched. After a selected member is found, it is not searched for
again. Therefore, after it is found, a selected member is copied or loaded. If the
same member exists on another input data set, it is not searched for, and
hence, not copied or loaded.

� When an exclusive copy or load is performed, the output partitioned data set
contains all members, except those specified for exclusion, that were on the
last input data set copied or loaded.

Renaming Selected Members
Using the SELECT statement to rename members: To use the SELECT state-
ment to rename members, you should place the old name, the new name, and
optionally a replace (R) indicator together inside parentheses as an operand of the
MEMBER parameter on a SELECT statement. MEMBER parameter operands may
consist of as many old name/new name/replace sets as you need.

The replace (R) option must be used if the new name matches a name of a
member in the output data set, or the member will not be copied. It does not matter
if replace is indicated globally for all members by using the INDD parameter, or if it
is indicated for individual members in the MEMBER parameter.

The selected members are not renamed in the input data set directory. They are
just added to the output data set with the new name.

Copying Program Objects (COPYGRP Statement)
It is recommended that you use the COPYGRP statement to copy program objects
and their aliases from or to a PDSE data set. Program objects can have aliases
that are longer than eight characters. Using the COPYGRP statement will ensure
that these longer aliases are copied along with their member.

32 DFSMS/MVS V1R5 Utilities

 IEBCOPY

Use the COPYGRP statement to begin a group copy, unload, or load. A group con-
sists of a member and all of its aliases. COPYGRP treats the group as a single
entity.

COPYGRP can be used to copy a data set when either the input data set or the
output data set, or both, are PDSE:

PDSE to PDSE
PDSE to PDS
PDS to PDSE

For unloading groups:

PDSE to PS

For loading groups:

PS to PDSE

If neither data set is a PDSE, the request is treated the as a COPY operation
subject to the syntax requirements of COPYGRP.

When using the COPYGRP statement:

� All aliases in a group will be copied with the member or neither the aliases or
the member in a group will be copied.

� There can be only one INDD per copy operation.

� You can use the SELECT statement to selectively copy members. Either the
member name or an alias can be specified to copy the member and all of its
aliases.

� Do not indicate replace (R) on the SELECT statement.

� The EXCLUDE statement is not supported.

Replacing Program Objects
If the replace (R) option is indicated on the INDD parameter,

� The output data set members and their aliases will be replaced if they have the
same member and alias names as the input data set's members and aliases.

Example:

The input data set has member A with alias B; the output data set has
member A with alias B. The input data set's member and alias will replace
the output data set member and alias.

� The copy will fail if a member's alias in the output data is the same as a differ-
ently named member's alias in the input data set.

Example:

The input data set has member A with alias B; the output data set has
member C with alias B. The copy will fail because the alias B points to a
member with a different name on the output data set.

� If the output data set's members and aliases do not match the input data set's
members and aliases, then all of the input data set's members and aliases are
copied.

Example:

 IEBCOPY (Library Copy) Program 33

 IEBCOPY

The input data set has member A with alias B; the output data set has
member C with alias D. After the copy, the output data set will contain A
with alias B and C with alias D.

The EXCLUDE statement is not supported.

Compressing a Partitioned Data Set
A partitioned data set will contain unused areas (sometimes called gas) where a
deleted member or the old version of an updated member once resided. This
unused space is only reclaimed when a partitioned data set is copied to a new data
set, or after a compress-in-place operation successfully completes. It has no
meaning for a PDSE and is ignored if requested.

The simplest way to request a compress-in-place operation, is to specify the same
ddname for both the OUTDD and INDD parameters of a COPY statement.

However, a compress is actually performed when both the input and output is the
same data set on the same volume. For example, this job step will compress data
set Pacanowska:

//COMPRESS EXEC PGM=IEBCOPY
//A DD DSNAME='Pacanowska',DISP=OLD
//B DD DSNAME='Pacanowska',DISP=OLD
//SYSIN DD \
 COPY OUTDD=B,INDD=A

If multiple entries are made on the INDD statement, a compress-in-place occurs
when any of the input ddnames matches the OUTDD name. The compress opera-
tion is performed in the same relative order as the ddnames in the INDD list.

For example, consider the COPY statement:

 COPY OUTDD=B,INDD=(A,B,C,B)

� The data set for ddname A is copied to ddname B
� The data set B is compressed
� ddname C is copied to ddname B
� The data set B is compressed again.

It is a good idea to make a copy of the data set that you intend to compress-in-
place before you actually do so. You can use the same execution of IEBCOPY to
do both, and a following job step could delete the backup copy if the IEBCOPY job
step ends with a return code of 0.

Attention: A partitioned data set can be destroyed if IEBCOPY is interrupted during
processing, for example, by a power failure, abend, TSO attention, or I/O error.
Keep a backup of the partitioned data set until the successful completion of a
compress-in-place.

Attention: Do not compress a partitioned data set currently being used by more
than one user. If you do, the other users will see the data set as damaged, even
though it is not. If any of these other users update the partitioned data set after you
compress it, then their update will actually damage the partitioned data set.

34 DFSMS/MVS V1R5 Utilities

 IEBCOPY

Processing Considerations for Compress
� If you try to perform a compress-in-place on a PDSE, IEBCOPY will ignore your

request and continue processing with the next control statement.

� A compress-in-place does not release extents assigned to the data set.

� During a compress operation, you cannot include, exclude, or rename selected
members.

� You may not change any data set DCB parameters, such as block size, when
compressing a data set.

Altering Load Modules
ALTERMOD is designed as a one-time update operation against load modules from
old systems. You can use IEBCOPY to update partitioned data set load modules
that were written by a linkage editor prior to MVS/370, so that they will load faster.
Load modules processed with the linkage editor in MVS/370 and subsequent ver-
sions of MVS and DFSMS/MVS do not require alterations, nor do program objects
in a PDSE.

ALTERMOD will place correct relocation dictionary (RLD) counts and segment
block counts into control records inside the module. ALTERMOD performs this
update without making a new copy of the load module. It can be used to alter
modules that might have erroneous RLD counts. Examples of modules that might
have erroneous RLD counts are modules that were created by a program other
than the linkage editor or copied by a program other than IEBCOPY.

The ALTERMOD statement will not function when:

� The load modules are in scatter-load format or link edited with the noneditable
(NE) attribute.

� The data set is a PDSE. (It is ignored.)

When you use a SELECT statement to identify members to be processed by
ALTERMOD, you cannot rename them.

Copying and Reblocking Load Modules
The COPYMOD statement lets you COPY and reblock the load modules to a block
size appropriate for the device to which you are copying the data set.

The text records, relocation dictionary (RLD)/control records, and note list records
of overlay load modules will be rebuilt when you use COPYMOD. Other records
such as SYM and CESD records will be copied without any changes. The load
modules processed by COPYMOD can be link edited again.

� Load modules in page-aligned format are copied without reblocking, as if the
operation was COPY not COPYMOD, and the functions of ALTERMOD are
performed against the copy that was made.

� Load modules in scatter-load format and modules that were link-edited with the
noneditable (NE) attribute will be copied, but not reblocked or altered.

� Members that are not recognized as load modules will be copied, but not
reblocked or altered.

 IEBCOPY (Library Copy) Program 35

 IEBCOPY

� Load modules that have the downward compatible (DC) linkage editor attribute
are reblocked to a maximum block size of 1024 (1K) regardless of the value
specified on the MINBLK or MAXBLK parameter.

The block size in the output data set label is increased by COPYMOD as needed to
match the MAXBLK value.

COPYMOD does not write records longer than the output data set block size.
However, if COPYMOD cannot process a member, and COPY is used instead,
COPY will copy all records, including those records longer than the output data set
block size.

The reblocking function of COPYMOD lets you specify:

� A maximum block size for compatibility with other systems or programs

� A minimum block size to specify the smallest block that should be written on
the end of a track.

IEBCOPY will determine the amount of space remaining on a track before
assigning a size to the next block to be written. If this amount is smaller than the
output block size, IEBCOPY will try to determine if a smaller block can be written to
use the remaining space on the track. The maximum block size produced by the
COPYMOD function is 32760 bytes.

Changed COPYMOD operation
Before MVS/DFP Version 3, Release 2, the default MAXBLK size for COPYMOD
was 32760. The intention was to make text blocks as long as possible to reduce
the number of text blocks read to fetch the module. This often resulted in physical
records created in the data set which were longer than the BLKSIZE in the data set
label. (These blocks are called fat blocks.) This condition leads to I/O errors or a
violation of data integrity.

Starting with Version 3, Release 2, the default MAXBLK value is the data set block
size, not 32760. Further, if a MAXBLK value is specified that is larger than the
block size in the data set label, then the value in the data set label is increased to
the specified MAXBLK value.

How IEBCOPY uses Virtual Storage for Tables and Buffers
| Starting with IEBCOPY ESCON* Performance Updates the minimum work area
| size is about 208K. If your job has a small REGION size, you might have to
| increase it.

The recommended minimum REGION sizes for IEBCOPY jobs are 1M when only
partitioned data sets are copied, and 2M if a PDSE is copied.

The WORK=nnn parameter in the OS PARM field controls how much space
IEBCOPY requests for a work area. The REGION size must exceed the work size
plus the program size before an increase in the value of the work parameter will
have an effect.

From this work area comes tables, buffers, and storage for partitioned data set
directories. When there is not enough work area, the partitioned data set directories
spill to SYSUT3 and SYSUT4. If more storage is still needed, IEBCOPY will stop

36 DFSMS/MVS V1R5 Utilities

 IEBCOPY

with a message. Larger WORK and REGION values allow larger directories to be
processed without opening the spill data sets assigned to SYSUT3 and SYSUT4.

Large WORK and REGION sizes should be accompanied by a SIZE parameter
when small data sets are copied. This is to prevent the buffers from becoming too
large and causing a degradation in performance or a shortage in real storage.

How IEBCOPY Allocates Tables and Buffers
1. IEBCOPY obtains as large a work area as possible, up to the value of the

WORK parameter.

2. An initial minimum sized buffer and channel program construction area is allo-
cated from the work area.

The size of this area is approximately 4 times the size of the largest input or
output device track, plus about 3%.

If IEBCOPY cannot allocate a minimum sized work area, it will stop with a
message.

3. IEBCOPY processes control statements, reads the partitioned data set directo-
ries, and builds a table of members to be copied. When the work area cannot
hold the table and all directories, the directory entries are spilled to SYSUT3
and SYSUT4 to allow the table to grow. When no room remains and all directo-
ries are spilled, then IEBCOPY ends with a message.

4. If enough storage remains unused in the work area, it is used as a second
buffer.

If a SIZE= parameter is specified, the size of the second buffer is limited so
that the total size of both buffers does not exceed the specified value. If the
SIZE= value will not allow a minimum sized second buffer, it is not allocated.

Note: When SIZE=999999 (or any number that is a few thousand less than the
WORK= value) is coded, IEBCOPY might be able to allocate buffers in the
work area but not have enough room remaining for tables. If this happens,
increase the REGION= and WORK= values, or remove the SIZE= param-
eter.

When data sets with huge directories are copied, make the largest amount of virtual
storage available to retain directory information. Specify WORK=8M (or another
large value) and a correspondingly large REGION.

When data sets with small directories are copied with large work area sizes, the
second I/O buffer can become very large (megabytes) and cause real storage
shortages. This could result in increased system paging and system sluggishness,
because most of the buffer is backed by real frames which are fixed for duration of
the I/O. In this case, specify SIZE=1M or a smaller value to limit the amount of
storage used for buffers, but allow lots of storage to be used for directory informa-
tion.

Avoiding the Need to Supply Control Statements
When the SYSIN DD statement is a DD DUMMY, points to an empty file, or is
omitted, IEBCOPY will generate a COPY statement that allows you to load
IEBCOPY without supplying a control statement data set for SYSIN.

 IEBCOPY (Library Copy) Program 37

 IEBCOPY

The generated statement can take several forms, depending on what parameters
are specified in the OS PARM field.

1. When COMPRESS and REPLACE are not specified, the generated statement
is: COPY OUTDD=SYSUT2,INDD=SYSUT1 which will copy without replacing
from the data set designated by the SYSUT1 DD statement to the data set
designated by the SYSUT2 DD statement.

2. When COMPRESS is not specified but REPLACE is specified, the generated
statement is: COPY OUTDD=SYSUT2,INDD=(SYSUT1,R) which will copy with
replace from the data set designated by the SYSUT1 DD statement to the data
set designated by the SYSUT2 DD statement.

3. When COMPRESS is specified, then the generated statement is: COPY
OUTDD=SYSUT2,INDD=SYSUT2 which will compress in place the data set
designated by the SYSUT2 DD statement.

When any of the parameters COMPRESS, COPY, COPYMOD, or REPLACE are
specified in the OS PARM field, then SYSIN will not be opened and a control state-
ment as above will be automatically generated.

Input and Output
IEBCOPY uses the following input:

� A partitioned data set, or a PDSE, or unload data set that contains members to
be copied, merged, altered, reblocked, loaded, or unloaded.

� An optional control data set that contains utility control statements. The control
data set is required when:

There is more than one input or one output data set to be processed,
Designated members are to be selected or excluded, or
A load module library is to be altered or reblocked (ALTERMOD or
COPYMOD is needed).

IEBCOPY produces the following output:

� Output data sets, which contain the copied, merged, altered, reblocked, or
unloaded members. The output data set is either a new data set (from a copy,
reblock, load, or unload) or an old data set (from a merge, compress-in-place,
copy, alter, or load).

� A message data set, which lists control statements, IEBCOPY activities, and
error messages, as applicable.

IEBCOPY might require:

� Optional spill data sets, which are temporary data sets used to provide space
when not enough virtual storage is available for the input or output partitioned
data set directories. These data sets are opened only when needed.

If IEBCOPY is invoked from an application program, you can dynamically allocate
the data sets by issuing SVC 99 before calling IEBCOPY.

38 DFSMS/MVS V1R5 Utilities

 IEBCOPY

 Return Codes
See Appendix A for IEBCOPY return codes.

 Restrictions
� IEBCOPY does support VIO (virtual I/O) data sets.

� IEBCOPY uses the EXCP access method and special I/O appendages. There-
fore,

| – IEBCOPY is an APF-authorized program and therefore must run from an
| authorized library. IEHMOVE is an APF-authorized program. This means
| that if another program calls it, that program must also be APF-authorized.
| To protect system integrity, your program must follow the systm integrity
| requirements described in OS/390 MVS Assembler Services Guide,
| GC28–1762.

– Some common DCB parameters such as BUFNO are ignored,

– The performance of some combinations of DASD and CPUs might suffer if
IEBCOPY cannot receive and service a (channel) Program Controlled Inter-
ruption (PCI) fast enough.

� IEBCOPY must not be loaded in supervisor state or in protection key zero. It is
an application program that does not use the special system interfaces
assumed for the system kernel running in supervisor state or in protection key
zero.

� Variable spanned format record (VS or VBS) are not supported for a partitioned
data set.

� Shared or in use data sets should not be compressed in place or updated
unless the subject data set is made nonsharable. See “Introduction” on page 1.

� When a PDSE is involved and only a small amount of virtual storage is avail-
able to the PDSE processing routines, then messages about the shortage
might only appear on the console and not in the SYSPRINT data set.

� Load modules having the downward compatible (DC) linkage editor attribute will
be reblocked to a maximum block size of 1024 (1K) when encountered during
COPYMOD processing, regardless of the number specified on the MINBLK and
MAXBLK parameters.

� Reblocking cannot be performed if either the input or the output data set has:

– undefined format records
 – keyed records

– track overflow records
– note lists or user TTRNs

 or if compress-in-place is specified. (Load modules, with undefined record
formats and note lists, may be reblocked using the COPYMOD statement.)

� The compress-in-place function cannot be performed for the following:

– Unload data sets
– Data sets with track overflow records
– Data sets with keyed records
– Unmovable data sets
– PDSEs (request is ignored).

 IEBCOPY (Library Copy) Program 39

 IEBCOPY

� PDSEs cannot contain members with note lists, keys, or track overflow. You
cannot mix load modules and nonload modules in the same PDSE.

� Using OPTCD=W for any DASD could dramatically slow down a COPY opera-
tion. OPTCD is in the data set label, and therefore can be active when OPTCD
is not coded on the DD statement.

� OPTCD=W will only be honored when coded in the JCL. OPTCD=W, if present
in the data set label, will be deleted from the label.

Note: If IEBCOPY copies a record which is physically longer than the block size of
the output partitioned data set, message IEB175I (return code 4) is issued
to warn you that the data set contains fat blocks, which are physical records
created in the data set that are longer than the BLKSIZE in the data set
label.

� COPYMOD size limits

– The load modules used as input cannot have more than 60 CSECTS in a
single textblock.

– Overlay load modules cannot have more than 255 segments.

� IEBCOPY user TTR limits

– There are three user TTRN fields in the directory.

– Only one of these fields may have n>0.

– The maximum length of the note list record identified by the user TTRN
with n>0 is 1291 bytes including any block and record descriptor word.

– No TTRN fields in a note list record may have n>0.

– No user TTRN field in a note list record or in the partitioned data set direc-
tory may have the leftmost bit on (that is, the most significant bit of the first
“T” in TTRN).

� A load module from an unload data set cannot be reloaded into a PDSE as a
program object. The load modules should be reloaded into a partitioned data
set and then the partitioned data set should be copied to a PDSE to convert
the unloaded load module into a program object.

� IEBCOPY size limits

– The maximum number of renames allowed on all SELECT or EXCLUDE
cards for one copy operation is (2 * max_trk) / 16, where “max_trk” is the
cylinder length of the larger device used in the copy operation. For a 3380,
this limit is about 5925. For a 3390 the limit is about 7050, and for a 9345,
the limit is about 5800.

– Do not use a PDSU block size smaller than the PDS block size +20.

– SYSUT4 space must be a single contiguous extent.

 Control
IEBCOPY is controlled by JCL and utility control statements.

40 DFSMS/MVS V1R5 Utilities

 IEBCOPY

Job Control Statements
Figure 13 shows the job control statements for IEBCOPY.

Figure 13. Job Control Statements for IEBCOPY

Statement Use

JOB Starts the job.

EXEC Starts IEBCOPY.

SYSPRINT DD Defines a sequential data set used for listing control statements and
messages.

SYSUT1 or
anyname1 DD

Defines a partitioned data set or unload data set for input. A parti-
tioned data set must reside on DASD or be a VIO data set. The
unload data set is a sequential data set created as the result of an
unload operation and may reside on DASD or tape or any other
device supported by the QSAM access method.

SYSUT2 or
anyname2 DD

Defines a partitioned data set or unload data set for output. A parti-
tioned data set must reside on DASD or be a VIO data set. The
unload data set is a sequential data set that was created as the result
of an unload operation and may reside on DASD or tape or any other
device supported by the QSAM access method.

SYSUT3 DD Defines a spill data set on a DASD or VIO device. SYSUT3 is used
when there is no space in virtual storage for some or all of the current
input data set directory entries.

SYSUT4 DD Defines a spill data set on a DASD or VIO device. SYSUT4 is used
when there is no space in virtual storage for the output data set direc-
tory.

SYSIN DD Defines the optional control data set.

 EXEC Statement
The syntax of the EXEC statement is:

where:

PGM=IEBCOPY
specifies that you want to run the IEBCOPY program.

REGION={n|nK|nM}
specifies the amount of storage to be made available to IEBCOPY by the oper-
ating system. Specify 1M if you are only using partitioned data sets. If you are
using any PDSE, then specify 2M.

Note: The number n can be any number of digits, and is specified in decimal.
The K causes the number to be multiplied by 1024 bytes (1 kilobyte)
and M causes the number to be multiplied by 1024K or 1048576.

Note: Specifying a larger REGION size might not have an effect unless the
WORK= value is also increased.

Note: Specifying a REGION size on the JOB statement will override any
REGION specified on the EXEC statement.

//[stepname] EXEC [PGM=IEBCOPY.
[REGION={n|nK|nM}]
[PARM=<parms>]

 IEBCOPY (Library Copy) Program 41

 IEBCOPY

PARM=
You may specify any of the parameters below in any order to IEBCOPY. Sep-
arate multiple parameters with a comma between each one.

| CMWA=nK
| Specify this parameter to increase the COPYMOD work area size of 120K
| if larger load modules are being processed. This will be evident because
| message IEB1133E will be issued in this instance.

COMPRESS
If you direct IEBCOPY to generate a control statement, specify this param-
eter to make the control statement perform a compress-in-place operation
instead of a COPY operation. See “Avoiding the Need to Supply Control
Statements” on page 37.

COPY
If you direct IEBCOPY to generate a control statement, specify this param-
eter to make the control statement perform a COPY operation. See
“Avoiding the Need to Supply Control Statements” on page 37.

COPYGRP
If you direct IEBCOPY to generate a control statement, specify this param-
eter to make the control statement perform a COPYGRP operation. See
“Avoiding the Need to Supply Control Statements” on page 37.

COPYMOD
If you direct IEBCOPY to generate a control statement, specify this param-
eter to make the control statement perform a COPYMOD operation. See
“Avoiding the Need to Supply Control Statements” on page 37.

LC=n
LPP=n
LINECOUNT=n

n is the number of lines, including headings, to print on each page of the
SYSPRINT output listing. Default is 60.

LIST=NO
LIST=YES

sets the default value for the LIST= operand when it is omitted from the
COPY, COPYMOD, or ALTERMOD statement. Default is LIST=YES.

| RC4NOREP
| Use of this parameter will cause IEBCOPY to set a return code of X'04'
| when a module is not copied from the source dataset to the target dataset
| because REPLACE was not specified. When 'RC4NOREP' is specified,
| message IEB1067W will be issued for each module NOT copied due to the
| REPLACE option not being specified. Note: Message IEB1067W will be
| issued regardless of the LIST option requested.

REPLACE
If you direct IEBCOPY to generate a control statement, specify this param-
eter to make the control statement perform a copy with replace operation.
See “Avoiding the Need to Supply Control Statements” on page 37.

SIZE={n|nK|nM}
specifies the maximum number of bytes of virtual storage that IEBCOPY
may use as a buffer.

42 DFSMS/MVS V1R5 Utilities

 IEBCOPY

It is best to let IEBCOPY choose buffer sizes by not using this parameter.

The minimum buffer size is approximately 4 times the largest track size of
the devices being used, plus about 3%. There is no maximum for this
value, but IEBCOPY cannot use more than the quantity available in the
work area.

Note: The number n can be any number of digits, and is specified in
decimal. The K causes the number to be multiplied by 1024 bytes
(1 kilobyte) and M causes the number to be multiplied by 1024K or
1048576.

See “How IEBCOPY Allocates Tables and Buffers” on page 37.

WORK={n|nK|nM|1M}
specifies the number of bytes of virtual storage to request for a work area
to hold directory entries, internal tables, and I/O buffers. The default
request will be for 1M. The actual amount obtained will not exceed the
space available in the REGION.

Note: The number n can be any number of digits, and is specified in
decimal. The K causes the number to be multiplied by 1024 bytes
(1 kilobyte) and M causes the number to be multiplied by 1024K or
1048576.

See “How IEBCOPY uses Virtual Storage for Tables and Buffers” on
page 36.

SYSPRINT DD Statement
IEBCOPY writes a log of the control statements and its actions to the SYSPRINT
DD statement. IEBCOPY proceeds if SYSPRINT is unusable and issues summary
messages to the console.

You may assign SYSPRINT to SYSOUT or to any QSAM data set. These are the
valid DCB parameters you may specify:

DSORG=PS The output always has sequential organization.

RECFM=[F|FB|V|VB|FA|FBA|VA|VBA] The record format may be fixed, fixed
blocked, and variable or variable blocked. Any of these record formats
can be specified to include ISO/ANSI control characters (for example,
VBA instead of VB).

LRECL= The minimum logical record length that you may specify is 60 for fixed
length, or 64 for variable length. The maximum is 250.

BLKSIZE= If you are using fixed blocked records, the block size may be any mul-
tiple of the logical record length. If you are using variable or variable
blocked records, the block size must be a minimum of the logical record
length plus four.

If you do not specify anything for DCB parameters, and the data set label has no
DCB parameters, IEBCOPY will choose RECFM=FBA, LRECL=121, and a block

| size. When the output device is DASDor a standard labeled tape, the system will
| determine the block size to be used. When the output device is not DASD or a
| standard labeled tape, IEBCOPY will use the largest value that will work for the

specific device, adjusted as needed for the RECFM.

 IEBCOPY (Library Copy) Program 43

 IEBCOPY

If you specify any parameters different from those that IEBCOPY would choose,
IEBCOPY will adapt to them. It will choose a variable format record if you omit the
RECFM, and it will choose a LRECL and BLKSIZE consistent with the RECFM and
any LRECL or BLKSIZE you give it.

Note: Giving LRECL a value that is 1-byte less than the width of your TSO ter-
minal will allow you to view entire records from a listing without scrolling left
or right.

SYSUT1 (anyname1) and SYSUT2 (anyname2) DD Statements
DD statements are required for input and output data sets. There must be one DD
statement for each unique data set used in the job step. You must specify a unique
output DD statement (for the unload data set) for every input data set that you
unload. You cannot unload multiple data sets to the same unload data set.

Data sets used as input data sets in one copy operation can be used as output
data sets in another copy operation.

Input data sets cannot be concatenated together on the same DD statement.

Fixed or variable records can be reblocked, but you cannot convert fixed format
records into variable format records, or variable format records into fixed format
records. Reblocking or deblocking is performed automatically when the block size
of the input data set is not equal to the block size of the output data set.

For variable format data sets, the output LRECL must be greater than or equal to
the input LRECL. For fixed format data sets the input and output LRECL must
match. For undefined format data sets, the output BLKSIZE must be greater than or
equal to the input BLKSIZE, and any LRECL is ignored.

A PDSE might require somewhat more space than a partitioned data set requires to
hold the same data. When copying from a partitioned data set to a PDSE,
IEBCOPY will override a secondary space allocation of zero for the output PDSE,
rather than stop the job. The copy will obtain any additional space it requires in one
unit increments of the primary allocation (tracks, cylinders, or blocks). The sec-
ondary space quantity in the data set label will not be changed.

When IEBCOPY must supply DCB parameters for the output data set, it will use
the corresponding values from the input data set. In particular, system determined
block size will not be used for the output data set block size, nor will the system
determined block size or reblockable flags be set in the output data set label.

You should allow IEBCOPY to choose the DCB parameters for an unload data set.
If you must specify a block size, specify a value that is at least 20 bytes greater
than the input data set block size. (This will avoid creating spanned records in the
unload data set.) See “IEBCOPY Unload Data Set DCB Parameters” on page 28
for more information.

OPTCD=W may be used to request write verification of the data written and causes
DASD cached controllers (for instance, 3880-21, 3990-3) to perform a “write
through” operation.

Starting with ESCON support, OPTCD=W also causes a different set of channel
programs to be used for writing to ECKD* capable DASD and for reading from all

44 DFSMS/MVS V1R5 Utilities

 IEBCOPY

DASD. These programs could run much slower than the default ones; therefore,
there is a significant performance cost for using OPTCD=W.

The write verification requested by OPTCD=W is usually unnecessary, because
extensive error recovery occurs in both hardware and Error Recovery Procedures
(ERP) used by the MVS I/O supervisor. OPTCD=W does not cause the data read
from the device to be compared with the data in virtual storage and cannot detect
data garbled in transmission from virtual storage to the device control unit.
OPTCD=W causes the control unit to read data from the device (after it has been
written) to validate the error checking codes stored with the data.

SYSUT3 and SYSUT4 DD statements
In most uses of IEBCOPY, you do not need to provide space on spill data sets
(SYSUT3 and SYSUT4). If IEBCOPY is running in a region size of 2M or more,
neither of the spill data sets are needed if the output data set will have fewer than
1600 directory blocks.

In order to conserve space on DASD, you can use VIO for these data sets.
However, it is more efficient to increase the region size (and WORK=parameter
value) and not use the SYSUT3 and SYSUT4 data sets at all. You cannot use
multivolume data sets for these data sets.

The space required for SYSUT3 depends on the number of members to be copied
| or loaded. The space to be allocated for SYSUT4 must be equal to or greater than
| the number of blocks allocated to the largest output partitioned data set directory in
| the IEBCOPY jobstep. Use a block size of 80 to calculate space requirements.

The space required depends on the number of directory blocks to be written to the
output data set. SYSUT4 is only used if more than one data set is specified on a
given INDD list. The data set contains one directory block per data block. Use a
block size of 256 and a key length of 8 to calculate space requirements.

Note: SYSUT4 must be in a single contiguous extent, because SYSUT4 will
contain a copy of the output partitioned data set directory. The design of
data management requires that a partitioned data set directory be within a
single extent.

IEBCOPY ignores all DCB information specified for SYSUT3 or SYSUT4.

SYSIN DD Statement
The SYSIN DD statement is optional. If it is omitted, or a DUMMY data set, or an
empty data set, IEBCOPY will generate a control statement using options in the
PARM field.

SYSIN will not be opened if COPY, COPYMOD, REPLACE, or COMPRESS
appears in the PARM field.

If you are copying, loading, or unloading a single data set, or wish to compress a
data set in place, you can avoid using utility control statements by using SYSUT1
for the input data set and SYSUT2 for the output data set. See “Avoiding the Need
to Supply Control Statements” on page 37 for details.

Either fixed, variable, or undefined record format is acceptable, as is any BLKSIZE
and LRECL consistent with the record format and each other. If the record format
indicates carriage controls, the carriage control character in each record is ignored.

 IEBCOPY (Library Copy) Program 45

 IEBCOPY

Sequence numbers are optional. IEBCOPY will look for sequence numbers (8 digits
long) at the front of variable format records and at the end of fixed format records.
If IEBCOPY finds them in the first control statement, it will ignore those columns in
all control statements.

Utility Control Statements
IEBCOPY is controlled by the utility control statements in Figure 14.

Figure 14. IEBCOPY Utility Control Statements. The minor statements (SELECT or
EXCLUDE) can follow each major statement to restrict the scope of the major statements.

Statement Use

Major Statements

ALTERMOD Indicates the beginning of an alter-in-place operation for load modules.

COPY Indicates the beginning of a COPY operation.

COPYGRP Indicates the beginning of a COPYGRP operation.

COPYMOD Indicates the beginning of a copy and load module reblock operation.

INDD= Indicates the beginning of another copy step.

Minor Statements

EXCLUDE Specifies members in the input data set to be excluded from the copy
step.

SELECT Specifies which members in the input data set are to be copied.

 Abbreviations
COPY will accept the first letter as an abbreviation for all its key words, except
MINBLK. COPYMOD may be abbreviated CM. COPYGRP may be abbreviated CG.

 Continuation
To continue the copy control statement, stop at a comma. Put any nonblank char-
acter in column 72 and start in column 16 on the next record.

 Comments
To make a comment statement, place an asterisk (*) in the left column where the
label field goes. The record will be printed, then ignored. You may also place a
comment on any control statement which also has an operand. Leave 1 or more
spaces after the operand, and then start your comment.

Determining the IEBCOPY Operation To Be Performed
� To request a COPY operation, specify partitioned data sets as input and output.

� To request an UNLOAD operation, specify a partitioned input data set and a
sequential output data set.

� To request a LOAD operation, specify a sequential input data set and a parti-
tioned output data set.

46 DFSMS/MVS V1R5 Utilities

 IEBCOPY

Scope of Operation
IEBCOPY uses a copy operation/copy step concept. A copy operation starts with a
COPY, COPYGRP, COPYMOD, or ALTERMOD statement, and continues until
another COPY, COPYGRP, COPYMOD, or ALTERMOD statement is found, or the
end of the control data set is found. Within each copy operation, one or more copy
steps are present. Any INDD statement directly following a SELECT or EXCLUDE
statement marks the beginning of the next copy step and the end of the preceding
copy step within the copy operation. If such an INDD statement cannot be found in
the copy operation, the copy operation will consist of only one copy step.

Figure 15 shows the copy operation/copy step concept. Two copy operations are
shown in the figure. The first begins with the statement named COPOPER1, and
the second begins with the statement named COPOPER2.

There first copy operation shown in Figure 15. is copying two groups of members.
The first begins with the COPY statement and continues through the two SELECT
statements. The second begins with the first INDD statement following the two
SELECT statements and continues through the EXCLUDE statement preceding the
second COPY statement.

There second copy operation has two steps. The first step begins with the COPY
statement and continues through the SELECT statement. The second begins with
the INDD statement immediately following the SELECT statement.

Figure 15. Multiple Copy Operations within a Job Step

First Copy Operation
STEP 1 COPOPER1 COPY OUTDD=AA

INDD=ZZ
INDD=(BB,CC)
INDD=DD
INDD=EE

SELECT MEMBER=(MEMA,MEMB)
SELECT MEMBER=(MEMC)

STEP 2 INDD=GG

INDD=HH
EXCLUDE MEMBER=(MEMD,MEMH)

Second Copy Operation
STEP 1 COPOPER2 COPY OUTDD=YY

INDD=(MM,PP)
LIST=NO

SELECT MEMBER=MEMB

STEP 2 INDD=KK
INDD=(LL,NN)

 ALTERMOD Statement
The ALTERMOD statement is required to alter load modules in place. ALTERMOD
will only work with a partitioned data set, not a PDSE.

The syntax of the ALTERMOD statement is:

 IEBCOPY (Library Copy) Program 47

 IEBCOPY

where:

OUTDD=DDname
specifies the ddname of the partitioned data set that is to be altered.

LIST={YES|NO}
specifies whether the names of the altered members are to be listed in the
SYSPRINT data set. When this parameter is omitted, the default from the
EXEC PARM field applies.

[label] ALTERMOD OUTDD=DDname
[,LIST={YES|NO}]

 COPY Statement
Use the COPY statement to begin one or more copy, unload, or load operations.
Any number of operations can follow a single COPY statement; any number of
COPY statements can appear within a single job step.

The syntax of the COPY statement is:

where:

OUTDD=DDname
specifies the name of a DD statement that locates the output data set.

INDD=[(]{ DDname|(DDname,R)}[,...][)]
specifies the names of DD statements that locate the input data sets.

When an INDD= appears in a record by itself (that is, not with a COPY
keyword), it functions as a control statement and begins a new step in the
current COPY operation.

These values can be coded:

DDname
the ddname of the DD statement for the input data set. For an unload oper-
ation, only one ddname should be specified per COPY statement. If more
than one ddname is specified for a copy or load operation, the input data
sets are processed in the same sequence as the ddnames are specified.

R specifies that all members to be copied or loaded from this input data set
are to replace any identically named members on the output partitioned
data set. (In addition, members whose names are not on the output data
set are copied or loaded as usual.) When this option is specified, the
ddname and the R parameter must be enclosed in a set of parentheses; if
it is specified with the first ddname in INDD, the entire field, exclusive of the
INDD parameter, must be enclosed in a second set of parentheses.

LIST={YES|NO}
specifies whether the names of copied members are to be listed in the
SYSPRINT data set at the end of each input data set. When this parameter is
omitted, the default from the EXEC PARM field applies.

[label] COPY OUTDD=DDname
,INDD=[(]{ DDname|(DDname,R) }[,...][)] [,LIST={YES|NO}]

48 DFSMS/MVS V1R5 Utilities

 IEBCOPY

Usage Notes for COPY: The control statement operation and keyword parame-
ters can be abbreviated to their first letters; for example, COPY can be abbreviated
to C and OUTDD can be abbreviated to O.

If there are no keywords other than OUTDD on the COPY record, comments may
not be placed on the record.

You can use COPY to copy and reblock data sets with fixed-blocked or variable-
blocked records. You cannot use COPY to reblock undefined records or load
module libraries. Instead, use COPYMOD to copy and reblock a load library.

Only one INDD and one OUTDD keyword may be placed on a single record.
OUTDD must appear on the COPY statement. When INDD appears on a separate
record, no other operands may be specified on that record, and INDD is not pre-
ceded by a comma.

A COPY statement must precede SELECT or EXCLUDE statements when
members are selected for or excluded from a copy, unload, or load step. In addi-
tion, if an input ddname is specified on a separate INDD statement, it must follow
the COPY statement and precede the SELECT or EXCLUDE statement which
apply to it.

 COPYGRP Statement
Use the COPYGRP statement to begin a group copy, unload, or load. A group con-
sists of a member and all of its aliases. COPYGRP treats the group as a single
entity.

The syntax of the COPYGRP statement is:

where:

OUTDD=DDname
specifies the name of a DD statement that locates the output data set.

INDD={DDname| ((DDname,R))}
specifies the name of a DD statement that locates the input data set.

Note: Multiple INDD statements are not allowed for COPYGRP.

These values can be coded:

DDname
specifies the ddname, which is specified on a DD statement, of an input
data set.

R specifies that a group to be copied or loaded from this input data set is to
replace a group in the output data set. When this option is specified, the
ddname and the R parameter must be enclosed in a set of parentheses;
and the entire field, except the INDD parameter, must be enclosed in a
second set of parentheses.

[label] COPYGRP OUTDD=DDname
,INDD={DDname|((DDname,R))} [,LIST={YES|NO}]

 IEBCOPY (Library Copy) Program 49

 IEBCOPY

LIST={YES|NO}
specifies whether the names of copied members are to be listed in the
SYSPRINT data set at the end of each input data set. When this parameter is
omitted, the default from the EXEC PARM field applies.

Usage Notes for COPYGRP: The control statement can be abbreviated to CG.
Only one input ddname can be used per COPYGRP control statement.

The INDD and OUTDD keyword must appear on the COPYGRP statement.

A COPYGRP statement must precede the SELECT statement when members are
selected for a copy, unload, or load step. A SELECT statement following a
COPYGRP cannot contain the R (replace) parameter.

An EXCLUDE statement cannot follow a COPYGRP statement.

 COPYMOD Statement
Use the COPYMOD statement to copy load module libraries that you want to
reblock. The output data set must be partitioned. The input data set may be a parti-
tioned or a sequential data set created by an unload operation. If the input to
COPYMOD is not a valid load module, COPYMOD functions as a COPY.

The syntax of the COPYMOD statement is:

where:

OUTDD=DDname
specifies the name of a DD statement that locates the output data set.

INDD=[(]{ DDname|(DDname,R)}[,...][)]
specifies the names of DD statements that locate the input data sets.

When an INDD=appears in a record by itself (that is, not with a COPY
keyword), it functions as a control statement and begins a new step in the
current copy operation.

These values can be coded:

DDname
specifies the ddname, which is specified on a DD statement, of an input
data set which is a load module library.

R specifies that all members to be copied from this input data set are to
replace any identically named members on the output load module library.
(In addition, members whose names are not on the output data set are
copied as usual.) When this option is specified, the ddname and the R
parameter must be enclosed in a set of parentheses; if it is specified with
the first ddname in INDD, the entire field, exclusive of the INDD parameter,
must be enclosed in a second set of parentheses.

[label] COPYMOD OUTDD=DDname
,INDD=[(]{ DDname|(DDname,R) }[,...][)]
[,MAXBLK={ nnnnn|nnK}]
[,MINBLK={ nnnnn|nnK}]
[,LIST={YES|NO}]

50 DFSMS/MVS V1R5 Utilities

 IEBCOPY

MAXBLK={ nnnnn|nnK}
specifies the maximum block size for records in the output partitioned data set.
MAXBLK is normally used to specify a smaller block size than the default, in
order to make the record length of the data set compatible with different
devices or programs.

The nnnnn value is specified as a decimal number; K indicates that the nn
value is to be multiplied by 1024 bytes.

MAXBLK may be specified with or without MINBLK.

Default: The COPYMOD MAXBLK parameter defaults to the output data set
block size. If the output data set block size is zero, it defaults to the input data
set block size.

MINBLK={ nnnnn|nnK}
specifies the minimum block size for records in the output partitioned data set.
MINBLK specifies the smallest block that should be written on the end of a
track.

The MINBLK keyword is provided for compatibility with earlier MVS releases in
which a larger, less-than-track-size MINBLK value could enhance program fetch
performance for the module. Under normal circumstances, MINBLK should not
be specified.

The nnnnn value is specified as a decimal number; K indicates that the nn
value is to be multiplied by 1024 bytes.

MINBLK may be specified with or without MAXBLK.

Default: 1K (1024). If a value greater than MAXBLK is specified, MINBLK is set
to the MAXBLK value actually used (whether specified or defaulted). If a value
less than 1K is specified, MINBLK is set to 1K.

LIST={YES|NO}
specifies whether the names of copied members are to be listed in the
SYSPRINT data set at the end of each input data set. When this parameter is
omitted, the default from the EXEC PARM field applies.

 INDD=Statement
In addition, when INDD, a COPY statement parameter, appears on a record other
than the COPY statement, it is referred to as an INDD statement. It functions as a
control statement in this context.

If one or more INDD statements are immediately followed by end of file or another
COPY or COPYMOD or ALTERMOD statement, a full copy, unload, or load opera-
tion is completed using the most recent previously specified output data set.

 EXCLUDE Statement
The EXCLUDE statement specifies members to be excluded from the copy, unload,
or load step. All members in the input data set except those specified on each
EXCLUDE statement are omitted from the operation. More than one EXCLUDE
statement may be used in succession, in which case, the second and subsequent
statements are treated as a continuation of the first.

The EXCLUDE statement must follow either a COPY statement, an ALTERMOD, a
COPYMOD statement, or one or more INDD= statements. An EXCLUDE statement

 IEBCOPY (Library Copy) Program 51

 IEBCOPY

cannot appear with a SELECT statement in the same copy, unload, or load step.
The EXCLUDE statement cannot be used with a compress-in-place or COPYGRP.

If neither SELECT nor EXCLUDE is specified, the entire data set is copied (a “full
copy”).

The syntax of the EXCLUDE statement is:

where:

MEMBER=[(] name1[,name2][,...][)]
specifies members on the input data set that are not to be copied, unloaded, or
loaded to the output data set. The members are not deleted from the input data
set.

The control statement operation and keyword parameters can be abbreviated to
their first letters; EXCLUDE can be abbreviated to E and MEMBER can be abbrevi-
ated to M.

Each member name on an EXCLUDE statement must be unique.

[label] EXCLUDE MEMBER=[(] name1[,name2][,...][)]

 SELECT Statement
The SELECT statement specifies members to be selected from input data sets to
be altered, copied, loaded, or unloaded to an output data set. This statement is
also used to rename or replace selected members on the output data set. More
than one SELECT statement may be used in succession, in which case the second
and subsequent statements are treated as a continuation of the first.

The SELECT statement must follow either a COPY statement, a COPYGRP state-
ment, a COPYMOD statement, or one or more INDD statements. A SELECT state-
ment cannot appear with an EXCLUDE statement in the same copy, unload, or
load step, and it cannot be used with a compress-in-place function.

When a selected member is found on an input data set, it is not searched for again
in this copy step.

Each member name on a SELECT statement must be unique.

A selected member will not replace an identically named member in the output data
set unless the replace option is specified on either the data set or member level.
(For a description of replacing members, see “Replacing Members in a Data Set”
on page 31.) In addition, unless the replace option is specified, a renamed member
will not replace a member in the output data set that has the same new name as
the renamed member.

The syntax of the SELECT statement is:

[label] SELECT MEMBER=({name1|
 (name1,newname1[,R])|
 (name1,,R)}
 [,{name2|
 (name2,newname2[,R])|
 (name2,,R)}][,...])

52 DFSMS/MVS V1R5 Utilities

 IEBCOPY

where:

MEMBER=({name|(name,newname[,R])|(name,,R)}[,...])
specifies the members to be selected from the input data set.

To rename a member, specify the old name of the member, followed by the
new name and, optionally, the R (replace) parameter. This group must then be
enclosed in parentheses.

To replace a member, specify the name of the member and the R parameter.
Two commas must separate the R from the member name, and the group must
be enclosed in parentheses.

When any option within parentheses is specified anywhere in the MEMBER
field, the entire field, exclusive of the MEMBER keyword, must be enclosed in a
second set of parentheses.

The values that can be coded are:

name
identifies a specific member to be processed. All names and new names
specified in one copy step must be unique. You cannot duplicate either old
names, or new names, or both, under any circumstances. You cannot
rename A to B and B to C, because B will appear twice. You cannot
specify a name that is more than eight characters in length.

newname
specifies a new name for a selected member. Member names can consist
of A - Z, 0 - 9, or $ # @ _ , or {, and cannot be more than eight characters
in length. The member is copied, unloaded, or loaded to the output data set
using its new name. If the name already appears on the output partitioned
data set or PDSE, the member is not copied unless replacement is also
specified. Newname cannot be specified with ALTERMOD.

R specifies that the input member is to replace any identically named member
that exists on the output data set. If the input member's name is identical to
any output member's alias name, the name will refer to the new member
and not the old member.

R may not be coded with ALTERMOD or COPYGRP.

The control statement operation and keyword parameters can be abbreviated to
their first letters; for example, SELECT can be abbreviated to S and MEMBER can
be abbreviated to M.

 IEBCOPY Examples
The following examples illustrate some of the uses of IEBCOPY. Figure 16 can be
used as a quick-reference guide to IEBCOPY examples. The numbers in the
“Example” column refer to examples that follow.

Figure 16 (Page 1 of 2). IEBCOPY Example Directory

Operation Device Comments Example

Alter in Place Disk Selected members are altered in place. 10

Convert to PDSE Disk Converts a partitioned data set to a PDSE. 13

COPY Disk Copies a full data set from one disk volume to another. 1

 IEBCOPY (Library Copy) Program 53

 IEBCOPY

Figure 16 (Page 2 of 2). IEBCOPY Example Directory

Operation Device Comments Example

COPY Disk Copies three input data sets to an existing output data
set.

2

COPY Disk Copy a PDSE to a PDSE. 14

COPY Disk Selects members from two input data sets and copies
them to an existing output data set. One member
replaces an identically named member that already
exists on the output data set.

3

COPY Disks Selects, excludes, and copies members from input data
sets to one output data set. Illustrates multiple copy
operations.

6

COPY Disks Selects, excludes, and copies members from input data
sets to different output data sets. Illustrates multiple
copy operations.

7

COPY Disks Copy a selected group by specifying an alias. 16

COPY Disks Copy an entire PDSE to a PDSE with the replace (R)
option.

15

COPY and Compress-in-
place

Disk Copies two input data sets to an existing output data
set, which is compressed in place. Copies and replaces
all members of one data set. Members on the output
data set have the same name as those replaced.

5

Copy and reblock Disk
(3350 and
3380)

Copies a load library to devices with different optimal
block sizes. Reblocking must take place before the
member can be added to the load library.

11

Copy and reblock Disk
(3330,
3350, and
3380)

Copies load library to devices having different block
sizes. Reblocks the library to size compatible with each
device to which the library will be copied, then copies to
those devices.

12

Load Tape and
Disk

Loads a sequential data set to disk. 8

Unload and Compress-
in-place

Disk and
Tape

Unloads a partitioned data set to a tape volume to
create a compressed backup copy.

4

Unload, Load, and
COPY

Disk and
Tape

Excludes, unloads, loads, and copies selected
members.

9

Examples that use disk or tape in place of actual device numbers must be
changed before use. The actual device numbers depend on how your installation
has defined the devices to your system.

Example 1: Copy an Entire Data Set
In this example, a partitioned data set (DATASET5) is copied from one disk volume
to another. Figure 17 on page 56 shows the input and output data sets before and
after processing.

54 DFSMS/MVS V1R5 Utilities

 IEBCOPY

 //COPY JOB ...
 //JOBSTEP EXEC PGM=IEBCOPY
 //SYSPRINT DD SYSOUT=A
 //SYSUT1 DD DSNAME=DATASET5,UNIT=disk,VOL=SER=111113,
 // DISP=SHR
 //SYSUT2 DD DSNAME=DATASET4,UNIT=disk,VOL=SER=111112,
 // DISP=(NEW,KEEP),SPACE=(TRK,(5,1,2))

The control statements are discussed below:

� SYSUT1 DD defines a partitioned data set, DATASET5, that contains two
members (A and C).

� SYSUT2 DD defines a new partitioned data set, DATASET4, that is to be kept
after the copy operation. Five tracks are allocated for the data set; two blocks
are allocated for directory entries.

� Because the partitioned data set has only two members, SYSUT3 and SYSUT4
DD are not needed.

� Because the input and output data sets are identified as SYSUT1 and
SYSUT2, the SYSIN data set is not needed. The SYSUT1 data set will be
copied in full to the SYSUT2 data set. After the copy operation is finished,
DATASET4 will contain the same members that are in DATASET5. However,
there will be no embedded, unused space in DATASET4. If you are copying a
PDSE, the processing is the same, except that there is no embedded, unused
space in a PDSE.

 IEBCOPY (Library Copy) Program 55

 IEBCOPY

Input

Output

DATASET5

DATASET4

Before copy
operation

After processing
DATASET5

Directory
A C

Unused

Unused

Members
C

A

Available

Available

Available

Directory
A C

Members
C

A

Figure 17. Copying a Partitioned Data Set—Full Copy

Example 2: Merge Four Data Sets
In this example, members are copied from three input partitioned data sets
(DATASET1, DATASET5, and DATASET6) to an existing output partitioned data
set (DATASET2). The sequence in which the control statements occur controls the
manner and sequence in which partitioned data sets are processed. Figure 18 on
page 57 shows the input and output data sets before and after processing.

56 DFSMS/MVS V1R5 Utilities

 IEBCOPY

DATASET1 DATASET6

DATASET5

DATASET2

Output

Input

Directory
A B F

A

Unused

B

Available

Directory
B C D

D

C

Directory
A C

Unused

Unused

A

Directory
C E

C

Directory
A B C E F

C

F

A

B

Directory
A B C D E F

C

F

A

B

D

Directory
A B C D E F

C

F

A

B

D

Before copy
operation

After processing
DATASET1

After processing
DATASET6

After processing
DATASET5

Available
Available

Available

Available
Available Available

Member
F

Member
B

Member
C

Member
E

Member
E

Member
E

Member
E

Figure 18. Copying from Three Input Partitioned Data Sets

The example follows:

 IEBCOPY (Library Copy) Program 57

 IEBCOPY

 //COPY JOB ...
 //JOBSTEP EXEC PGM=IEBCOPY
 //SYSPRINT DD SYSOUT=A
 //IN1 DD DSNAME=DATASET1,UNIT=disk,VOL=SER=111112,
 // DISP=SHR
 //IN5 DD DSNAME=DATASET5,UNIT=disk,VOL=SER=111114,
 // DISP=OLD
 //OUT2 DD DSNAME=DATASET2,UNIT=disk,VOL=SER=111115,
 // DISP=(OLD,KEEP)
 //IN6 DD DSNAME=DATASET6,UNIT=disk,VOL=SER=111117,
 // DISP=(OLD,DELETE)
 //SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(1))
 //SYSIN DD \
 COPYOPER COPY OUTDD=OUT2
 INDD=IN1
 INDD=IN6
 INDD=IN5
 /\

The control statements are discussed below:

� IN1 DD defines a partitioned data set (DATASET1). This data set contains
three members (A, B, and F) in fixed format with a logical record length of 80
bytes and a block size of 80 bytes.

� IN5 DD defines a partitioned data set (DATASET5). This data set contains two
members (A and C) in fixed blocked format with a logical record length of 80
bytes and a block size of 160 bytes.

� OUT2 DD defines a partitioned data set (DATASET2). This data set contains
two members (C and E) in fixed-block format. The members have a logical
record length of 80 bytes and a block size of 240 bytes.

� IN6 DD defines a partitioned data set (DATASET6). This data set contains
three members (B, C, and D) in fixed-block format with a logical record length
of 80 bytes and a block size of 400 bytes. This data set is to be deleted when
processing is completed.

� SYSUT3 defines a temporary spill data set.

� SYSIN DD defines the control data set, which follows in the input stream. The
data set contains a COPY statement and three INDD statements.

� COPY indicates the start of the copy operation. The OUTDD parameter speci-
fies DATASET2 as the output data set.

� The first INDD statement specifies DATASET1 as the first input data set to be
processed. All members (A, B and F) are copied to DATASET2.

� The second INDD statement specifies DATASET6 as the second input data set
to be processed. Processing occurs as follows:

1. Since replacement is not specified, members B and C, which already exist
in DATASET2, are not copied to DATASET2.

2. Member D is copied to DATASET2.

3. All members in DATASET6 are lost when the data set is deleted.

� The third INDD statement specifies DATASET5 as the third input data set to be
processed. No members are copied to DATASET2 because all exist in
DATASET2.

58 DFSMS/MVS V1R5 Utilities

 IEBCOPY

Example 3: Copy and Replace Selected Members of a Data Set
In this example, two members (A and B) are selected from two input partitioned
data sets (DATASET5 and DATASET6) and copied to an existing output partitioned
data set (DATASET1). Member B replaces an identically named member that
already exists on the output data set. Figure 19 shows the input and output data
sets before and after processing.

Output

DATASET1

Input

UnusedUnused
Unused

Available

AvailableAvailable

Directory
B C D

Directory
A B F

Directory
A B F

Directory
A B F

Member
B
D

C

AAA

B B

B

DATASET5 DATASET6

Before copy
operation

After processing
DATASET5 After processing

DATASET6

Member
F

Member
F

Member
F

Copy replacing
member B

Unused
Member

C

Unused

A

Available

Directory
A C

Old member B
not pointed to

Figure 19. Selective Copy with Replace specified on the Member Level

 IEBCOPY (Library Copy) Program 59

 IEBCOPY

//COPY JOB ...
 //JOBSTEP EXEC PGM=IEBCOPY
 //SYSPRINT DD SYSOUT=A
 //OUT1 DD DSNAME=DATASET1,UNIT=disk,VOL=SER=111112,
 // DISP=(OLD,KEEP)
 //IN6 DD DSNAME=DATASET6,UNIT=disk,VOL=SER=111115,
 // DISP=OLD
 //IN5 DD DSNAME=DATASET5,UNIT=disk,VOL=SER=111116,
 // DISP=(OLD,KEEP)
 //SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(1))
 //SYSUT4 DD UNIT=SYSDA,SPACE=(TRK,(1))
 //SYSIN DD \
 COPYOPER COPY OUTDD=OUT1
 INDD=IN5,IN6
 SELECT MEMBER=((B,,R),A)
 /\

The control statements are discussed below:

� OUT1 DD defines a partitioned data set (DATASET1), which contains three
members (A, B and F).

� IN6 DD defines a partitioned data set (DATASET6), which contains three
members (B, C and D).

� IN5 DD defines a partitioned data set (DATASET5), which contains two
members (A and C).

� SYSUT3 and SYSUT4 DD define temporary spill data sets. One track is allo-
cated for each on a disk volume.

� SYSIN DD defines the control data set, which follows in the input stream. The
data set contains a COPY statement, an INDD statement, and a SELECT
statement.

� COPY indicates the start of the copy operation. The use of a SELECT state-
ment causes a selective copy. The OUTDD parameter specifies DATASET1 as
the output data set.

� INDD specifies DATASET5 as the first input data set to be processed and
DATASET6 as the second input data set to be processed. Processing occurs
as follows:

1. Selected members are searched for on DATASET5.

2. Member A is found, but is not copied to DATASET1 because DATASET1
already has a member named “A,” and the replace option is not specified
for member A.

3. Selected members not found on DATASET5 are searched for on
DATASET6.

4. Member B is found and copied to DATASET1, even though there is already
a DATASET1 member “B” in DATASET1, because the replace option is
specified for member B on the member level. The pointer in DATASET1's
directory is changed to point to the new (copied) member B; thus, the
space occupied by the old member B is unused.

� SELECT specifies the members to be selected from the input data sets
(DATASET5 and DATASET6) to be copied to the output data set (DATASET1).

60 DFSMS/MVS V1R5 Utilities

 IEBCOPY

Example 4: Unload and Compress a Data Set
In this example, a partitioned data set is unloaded to a tape volume to create a
backup copy of the data set. If this step is successful, the partitioned data set is to
be compressed in place.

 //SAVE JOB ...
 //STEP1 EXEC PGM=IEBCOPY
 //SYSPRINT DD SYSOUT=A
 //SYSUT1 DD DSNAME=PARTPDS,UNIT=disk,VOL=SER=PCPðð1,
 // DISP=OLD
 //SYSUT2 DD DSNAME=SAVDATA,UNIT=tape,VOL=SER=TAPEð3,
 // DISP=(NEW,KEEP),LABEL=(,SL)
 //SYSUT3 DD DSNAME=TEMP1,UNIT=disk,VOL=SER=111111,
 // DISP=(NEW,DELETE),SPACE=(8ð,(6ð,45))
 //SYSIN DD DUMMY
 //STEP2 EXEC PGM=IEBCOPY,COND=(ð,NE),PARM='SIZE=5ððK'
 //SYSPRINT DD SYSOUT=A
 //COMPDS DD DSNAME=PARTPDS,UNIT=disk,DISP=OLD,
 // VOL=SER=PCPðð1
 //SYSUT3 DD DSNAME=TEMPA,UNIT=disk,VOL=SER=111111,
 // DISP=(NEW,DELETE),SPACE=(8ð,(6ð,45))
 //SYSIN DD \
 COPY OUTDD=COMPDS,INDD=COMPDS
 /\

The control statements are discussed below:

� SYSUT1 DD defines a partitioned data set (PARTPDS) that resides on a disk
volume and is assumed to have 700 members. The number of members is
used to calculate the space allocation on SYSUT3.

� SYSUT2 DD defines a sequential data set to hold PARTPDS in unloaded form.
Block size information can optionally be added; this data set must be NEW.

� SYSUT3 DD defines the temporary spill data set. The SYSUT4 data set is
never used for an unload operation.

� SYSIN DD defines the control data set. Because SYSIN is dummied and
SYSUT2 defines a sequential data set, all members of the SYSUT1 data set
will be unloaded to the SYSUT2 data set.

� The second EXEC statement marks the beginning of the compress-in-place
operation. The SIZE parameter indicates that the buffers are to be as large as
possible. The COND parameter indicates that the compress-in-place is to be
performed only if the unload operation was successful.

� COMPDS DD defines a partitioned data set (PARTPDS) that contains 700
members and resides on a disk volume.

� SYSUT3 DD defines the temporary spill data set to be used if there is not
enough space in main storage for the input data set's directory entries. TEMPA
contains one 80-character record for each member.

� SYSIN DD defines the control data set, which follows in the input stream. The
data set contains a COPY statement.

� COPY marks the beginning of the copy operation. Because the same DD state-
ment is specified for both the INDD and OUTDD operands, the data set is com-
pressed in place. If a PDSE is being used, this step will not be processed.

 IEBCOPY (Library Copy) Program 61

 IEBCOPY

If you want to unload more than one data set in a single use of IEBCOPY, you
must use a separate COPY statement for each unload operation. Only one input
data set may be specified in an unload operation.

Example 5: Merge Data Sets and Compress the Merged Data Set
In this example, two input partitioned data sets (DATASET5 and DATASET6) are
copied to an existing output partitioned data set (DATASET1). In addition, all
members on DATASET6 are copied; members on the output data set that have the
same names as the copied members are replaced. After DATASET6 is processed,
the output data set (DATASET1) is compressed in place. Figure 20 on page 63
shows the input and output data sets before and after processing.

 //COPY JOB ...
 //JOBSTEP EXEC PGM=IEBCOPY
 //SYSPRINT DD SYSOUT=A
 //INOUT1 DD DSNAME=DATASET1,UNIT=disk,VOL=SER=111112,
 // DISP=(OLD,KEEP)
 //IN5 DD DSNAME=DATASET5,UNIT=disk,VOL=SER=111114,
 // DISP=OLD
 //IN6 DD DSNAME=DATASET6,UNIT=disk,VOL=SER=111115,
 // DISP=(OLD,KEEP)
 //SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(1))
 //SYSUT4 DD UNIT=SYSDA,SPACE=(TRK,(1))
 //SYSIN DD \
 COPYOPER COPY OUTDD=INOUT1,INDD=(IN5,(IN6,R),INOUT1)
 /\

The control statements are discussed below:

� INOUT1 DD defines a partitioned data set (DATASET1), which contains three
members (A, B and F).

� IN5 DD defines a partitioned data set (DATASET5), which contains two
members (A and C).

� IN6 DD defines a partitioned data set (DATASET6), which contains three
members (B, C and D).

� SYSUT3 and SYSUT4 DD define temporary spill data sets. One track is allo-
cated for each on a disk volume.

� SYSIN DD defines the control data set, which follows in the input stream. The
data set contains a COPY statement.

� COPY indicates the start of the copy operation. The OUTDD operand specifies
DATASET1 as the output data set.

The INDD operand specifies DATASET5 as the first input data set to be proc-
essed. It then specifies DATASET6 as the second input data set to be proc-
essed. In addition, the replace option is specified for all members copied from
DATASET6. Finally, it specifies DATASET1 as the last input data set to be
processed. Since DATASET1 is also the output data set, DATASET1 is com-
pressed in place. However, if DATASET1 is a PDSE, the compress-in-place
operation will not be processed.

Processing occurs as follows:

1. Member A is not copied from DATASET5 into DATASET1 because it
already exists on DATASET1 and the replace option was not specified for
DATASET5.

62 DFSMS/MVS V1R5 Utilities

 IEBCOPY

Input

Output

DATASET1

DATASET5 DATASET6 DATASET1

Directory
A C

Member
C

A

Unused

Unused

Available

Directory
B C D

Member
B

D

C

Available

Directory
A B C D F

Member
F

A

B

D

C

Unused

All members
copied:
members B
and C replace
old identically
named members

Directory
A B F

Directory
A B C F

Directory
A B C D F

Directory
A B C D F

Member
F

Member
F

Member
F

Member
F

A

B

A

B

C

A

B

D

C

A

B

D

C

Unused Unused

Unused

Available

Available Available

Before copy
operation

After processing
DATASET5

After processing
DATASET6

After compressing
in place

Old
members

B and
C not

pointed to

Figure 20. Compress-in-Place Following Full Copy with “Replace” Specified

2. Member C is copied from DATASET5 to DATASET1, occupying the first
available space.

3. All members are copied from DATASET6 to DATASET1, immediately fol-
lowing the last member. Members B and C are copied even though the

 IEBCOPY (Library Copy) Program 63

 IEBCOPY

output data set already contains members with the same names because
the replace option is specified on the data set level.

The pointers in DATASET1's directory are changed to point to the new
members B and C. Thus, the space occupied by the old members B and C is
unused. The members currently on DATASET1 are compressed in place,
thereby eliminating embedded unused space.

Example 6: Multiple Copy Operations with One Output Data Set
In this example, members are selected, excluded, and copied from input partitioned
data sets onto an output partitioned data set. This example is designed to illustrate
multiple copy operations.

The example follows. Figure 21 on page 66 shows the input and output data sets
before and after processing.

 //COPY JOB ...
 //JOBSTEP EXEC PGM=IEBCOPY
 //SYSPRINT DD SYSOUT=A
 //INOUTA DD DSNAME=DATASETA,UNIT=disk,VOL=SER=111113,
 // DISP=OLD
 //INB DD DSNAME=DATASETB,UNIT=disk,VOL=SER=111115,
 // DISP=(OLD,KEEP)
 //INC DD DSNAME=DATASETC,UNIT=disk,VOL=SER=111114,
 // DISP=(OLD,KEEP)
 //IND DD DSNAME=DATASETD,UNIT=disk,VOL=SER=111116,
 // DISP=OLD
 //INE DD DSNAME=DATASETE,UNIT=disk,VOL=SER=111117,
 // DISP=OLD
 //OUTX DD DSNAME=DATASETX,UNIT=disk,VOL=SER=111112,
 // DISP=(NEW,KEEP),SPACE=(TRK,(3,1,2))
 //SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(1))
 //SYSIN DD \
 COPERST1 COPY O=OUTX,I=INOUTA
 COPY OUTDD=INOUTA,INDD=INOUTA
 INDD=INB
 COPY OUTDD=INOUTA
 INDD=IND
 EXCLUDE MEMBER=MM
 INDD=INC
 SELECT MEMBER=((ML,MD,R))
 INDD=INE
 /\

The control statements are discussed below:

� INOUTA DD defines a partitioned data, DATASETA, which contains seven
members (MA, MB, MC, MD, ME, MF and MG).

� INB DD defines a partitioned data set, DATASETB, which contains two
members (MA and MJ).

� INC DD defines a partitioned data set, DATASETC, which contains four
members (MF, ML, MM and MN).

� IND DD defines a partitioned data set, DATASETD, which contains two
members (MM and MP).

64 DFSMS/MVS V1R5 Utilities

 IEBCOPY

� INE DD defines a partitioned data set, DATASETE, which contains four
members (MD, ME, MF and MT).

� OUTX DD defines a partitioned data set (DATASETX). This data set is new and
is to be kept after the copy operation. Three tracks are allocated for the data
set on a disk volume. Two blocks are allocated for directory entries.

� SYSUT3 defines a temporary spill data set.

� SYSIN DD defines the control data set, which follows in the input stream. The
data set contains two COPY statements, several INDD statements, a SELECT
statement, and an EXCLUDE statement.

� The first COPY statement indicates the start of the first copy operation. This
copy operation is done to create a backup copy of DATASETA.

� The second COPY statement indicates the start of another copy operation.
Since DATASETA is specified in both the INDD and OUTDD parameters,
DATASETA is compressed in place.

The output data set is compressed in place first to save space because it is
known that it contains embedded, unused space.

The following INDD statement specifies DATASETB as the next input data set
to be copied. Only member MJ is copied, because DATASETA already con-
tains a member named “MA.”

� The third COPY statement indicates the start of the third copy operation. The
OUTDD parameter specifies DATASETA as the output data set. This copy
operation contains more than one copy step.

The first INDD statement specifies DATASETD as the first input data set to be
processed. Only member MP is copied to DATASETA because the EXCLUDE
statement specifies that member MM is to be excluded from the first copy step
within this copy operation.

The second INDD statement marks the beginning of the second copy step for
this copy operation and specifies DATASETC as the second input data set to
be processed. The SELECT statement specifies that member ML of
DATASETC is to be renamed “MD,” and that the new member will replace any
member in DATASETA that happens to be named “MD.” Member ML is
searched for, found, copied to DATASETA and renamed.

The third INDD statement marks the beginning of the third copy step for this
copy operation and specifies DATASETE as the last data set to be copied.
Only member MT is copied, because DATASETA already contains the other
members. Because the INDD statement is not followed by an EXCLUDE or
SELECT statement, a full copy is performed.

 IEBCOPY (Library Copy) Program 65

 IEBCOPY

Compress-in-Place Operation

Input DATASETA

DATASETA

DATASETB

Before copy
operation

After compressing
in place

After processing
DATASETB

Output

Unused

Unused

Unused

Unused

Unused

Unused

Unused

Unused

Available

Available

Available Available

Directory
MA MB MC MD

ME MF MG

MA MB MC MD
ME MF MG

Directory Directory Directory
MA MB MC MD

ME MF MG
MA MB MC MD
ME MF MG MJ

Directory
MA MJ

Member
MA

Member
MA

Member
MA

Member
MA

MB

MC

MD

ME

MF

MG

Member
MJ

MA

MB

MC

MD

ME

MF

MG

MB

MC

MD

ME

MF

MG

MB

MC

MD

MJ

MF

MG

ME

Figure 21 (Part 1 of 2). Multiple Copy Operations/Copy Steps

66 DFSMS/MVS V1R5 Utilities

 IEBCOPY

Multiple Copy Steps

Input DATASETD DATASETC DATASETE

Output

Directory
MM MP

Directory
MF ML MM MN

Directory
MD ME MF MT

Member
MP

MM

Member
MM

Member
MD

ML

MF

MN

MT

MF

ME

Unused

Unused

Member ML
is copied, renamed
MD, and replaces
the old member
MD

Directory
MA MB MC MD
ME MF MG MJ

Directory
MA MB MC MD

ME MF MG
MJ MP

Directory
MA MB MC MD

ME MF MG
MJ MP

Directory
MA MB MC MD
ME MF MG MJ

MP MT

Member
MA

MB

MC

MD

ME

MF

MG

MJ

Member
MA

MB

MC

MD

ME

MF

MG

MJ

MP

Member
MA
MB

MC

ME

MF

MG

MJ

MP

MD

Member
MA

MB

MC

ME

MF

MG

MJ

MP

MD

MT

UnusedUnused

Available
Available

Available
Available

Before copy
operation

After processing
DATASETD

After processing
DATASETC After processing

DATASETE

Old
Member

Figure 21 (Part 2 of 2). Multiple Copy Operations/Copy Steps

 IEBCOPY (Library Copy) Program 67

 IEBCOPY

Example 7: Multiple Copy Operations with Different Output Data Sets
In this example, members are selected, excluded, and copied from input partitioned
data sets to an output partitioned data set. This example is designed to illustrate
multiple copy operations. Figure 22 on page 70 shows the input and output data
sets before and after processing.

The example follows:

 //COPY JOB ...
 //JOBSTEP EXEC PGM=IEBCOPY
 //SYSPRINT DD SYSOUT=A
 //OUTA DD DSNAME=DATASETA,UNIT=disk,VOL=SER=111113,
 // DISP=OLD
 //INOUTB DD DSNAME=DATASETB,VOL=SER=111115,UNIT=disk,
 // DISP=(OLD,KEEP)
 //INOUTC DD DSNAME=DATASETC,VOL=SER=111114,UNIT=disk,
 // DISP=(OLD,KEEP)
 //INOUTD DD DSNAME=DATASETD,VOL=SER=111116,DISP=OLD,
 // UNIT=disk
 //INE DD DSNAME=DATASETE,VOL=SER=111117,DISP=OLD,
 // UNIT=disk
 //SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(1))
 //SYSUT4 DD UNIT=SYSDA,SPACE=(TRK,(1))
 //SYSIN DD \
 COPY OUTDD=OUTA
 INDD=INE
 SELECT MEMBER=(MA,MJ)
 INDD=INOUTC
 EXCLUDE MEMBER=(MM,MN)
 COPY OUTDD=INOUTB,INDD=INOUTD
 INDD=((INOUTC,R),INOUTB)
 COPY OUTDD=INOUTD,INDD=((INOUTB,R))
 SELECT MEMBER=MM
 /\

The control statements are discussed below:

� OUTA DD defines a partitioned data set, DATASETA, which contains three
members (MA, MB and MD).

� INOUTB DD defines a partitioned data set, DATASETB, which contains two
members (MA and MJ).

� INOUTC DD defines a partitioned data set, DATASETC, which contains four
members (MF, ML, MM and MN).

� INOUTD DD defines a partitioned data set, DATASETD, which contains two
members (MM and MP).

� INE DD defines a partitioned data set, DATASETE, which contains three
members (MA, MJ and MK).

� SYSUT3 and SYSUT4 DD define temporary spill data sets. One track is allo-
cated for each on a disk volume.

� SYSIN DD defines the control data set, which follows in the input stream. The
data set contains three COPY statements, two SELECT statements, one
EXCLUDE statement, and several INDD statements.

68 DFSMS/MVS V1R5 Utilities

 IEBCOPY

� The first COPY statement indicates the start of a copy operation. The OUTDD
operand specifies DATASETA as the output data set.

The first INDD statement specifies DATASETE as the first input data set to be
processed. The SELECT statement specifies that members MA and MJ are to
be copied from DATASETE to DATASETA. Processing occurs as follows:

1. Member MA is searched for and found, but is not copied because the
replace option is not specified.

2. Member MJ is searched for, found, and copied to DATASETA.

The second INDD statement marks the end of the first copy step and the
beginning of the second copy step within the first copy operation. It specifies
DATASETC as the second input data set to be processed. Members MF and
ML, which are not named on the EXCLUDE statement, are copied because
DATASETA contains neither one of them. EXCLUDE specifies that members
MM and MN are not to be copied from DATASETC to DATASETA.

� The second COPY statement indicates the start of another copy operation.
The OUTDD parameter specifies DATASETB as the output data set. The INDD
parameter specifies DATASETD as the first input data set to be processed.
Members MP and MM are copied to DATASETB.

The next INDD statement specifies DATASETC as the second and DATASETB
as the third input data set to be processed. Members MF, ML, MM and MN are
copied from DATASETC. Member MM is copied, although DATASETB already
contains a member MM, because the replace option is specified.

The pointer in DATASETB's directory is changed to point to the new (copied)
member MM. Thus, the space occupied by the replaced member MM is
embedded, unused space. DATASETB is then compressed in place to remove
embedded, unused space. (DATASETB is specified as both the input and
output data sets.)

� The third COPY statement indicates the start of the last copy operation. The
OUTDD parameter specifies DATASETD as the output data set. The INDD
parameter specifies DATASETB as the input data set.

SELECT specifies that member MM is to be copied from DATASETB to
DATASETD. Since the replace option is specified on the data set level,
member MM is copied and replaces DATASETDs member MM.

 IEBCOPY (Library Copy) Program 69

 IEBCOPY

Input

Output

DATASETA

DATASETE DATASETC

Directory
MA MJ MK

Member
MA

Directory
MF ML MM MN

Directory
MA MB MD

Directory
MA MB MD MJ

Directory
MA MB MD MF

Before copy
operation

After processing
DATASETE

After processing
DATASETC

First copy operation

Member
MF

MJ

MK

Available

Unused

Unused

ML

MN

MM

MJ ML

Member
MA

MB

MD

MJ

MF

ML

Available

Member
MA

MB

MD

MJ

Available

Available

Member
MA

MB

MD

Figure 22 (Part 1 of 3). Multiple Copy Operations/Copy Steps within a Job Step

70 DFSMS/MVS V1R5 Utilities

 IEBCOPY

Input

Output

DATASETB

DATASETD DATASETC

Directory
MM MP

Member
MP

Directory
MF ML MM MN

Directory
MA MJ

Directory
MA MJ MM MP

Directory
MA MF MJ ML
MM MN MP

Before copy
operation

After processing
DATASETD

Second copy operation

Member
MF

MM

Available

Unused

Unused

ML

MN

MM

Member
MA

MJ

MP

Unused

MF

ML

MN

Member
MA

MJ

MP

MM

Available

Available

Member
MA

MJ

MM

Directory
MA MF MJ ML
MM MN MP

Member
MA

MJ

MP

MF

ML

MN

MM

Avaliable

After compressing
in place

Old
member

DATASETB

Directory
MA MF MJ ML
MM MN MP

Member
MA

MJ

MP

MF

ML

MN

MM

Unused

After processing
DATASETC

Figure 22 (Part 2 of 3). Multiple Copy Operations/Copy Steps within a Job Step

 IEBCOPY (Library Copy) Program 71

 IEBCOPY

Third copy operation

Input DATASETB

DATASETD

Output

Directory
MA MF MJ ML

MM MN MP

MJ

MP

MF

ML

MN

MM

Available

Available
Available

Unused

Directory
MM MP

Member
MP

Member
MP

Directory
MM MP

MM

Copy replacing
member MM

Before copy
operation

After processing
DATASETB

MM

Old
member

Member
MA

Figure 22 (Part 3 of 3). Multiple Copy Operations/Copy Steps within a Job Step

Example 8: Loading a Data Set
In this example, a sequential data set created by an IEBCOPY unload operation is
loaded.

72 DFSMS/MVS V1R5 Utilities

 IEBCOPY

 //LOAD JOB ...
 //STEPA EXEC PGM=IEBCOPY
 //SYSPRINT DD SYSOUT=A
 //SYSUT1 DD DSNAME=UNLOADSET,UNIT=tape,LABEL=(,SL),
 // VOL=SER=TAPEð1,DISP=OLD
 //SYSUT2 DD DSNAME=DATASET4,UNIT=disk,VOL=SER=2222222,
 // DISP=(NEW,KEEP),SPACE=(CYL,(1ð,5,1ð))
 //SYSUT3 DD DSN=TEMP1,UNIT=disk,VOL=SER=111111,
 // DISP=(NEW,DELETE),SPACE=(8ð,(15,1))
 //SYSIN DD DUMMY
 /\

The control statements are discussed below:

� SYSUT1 DD defines a sequential data set that was previously created by an
IEBCOPY unload operation. The data set contains 28 members in sequential
organization.

� SYSUT2 DD defines a new partitioned data set on a disk volume. This data set
is to be kept after the load operation. Ten cylinders are allocated for the data
set; ten blocks are allocated for directory entries.

� SYSUT3 DD defines a temporary spill data set on a disk volume.

� SYSIN DD defines the control data set. Because SYSIN is dummied, SYSUT1
defines a sequential data set, and SYSUT2 defines a partitioned data set, the
entire SYSUT1 data set will be loaded into the SYSUT2 data set.

Example 9: Unload Selected Members, Load, Copy and Merge
In this example, members are selected, excluded, unloaded, loaded, and copied.
Processing will occur as follows: first, unload, excluding members; second, unload,
selecting members; and third, load and copy to merge members.

 IEBCOPY (Library Copy) Program 73

 IEBCOPY

 //COPY JOB ...
 //STEP EXEC PGM=IEBCOPY
 //SYSPRINT DD SYSOUT=A
 //PDS1 DD DSNAME=ACCOUNTA,UNIT=disk,VOL=SER=333333,
 // DISP=OLD
 //PDS2 DD DSNAME=ACCOUNTB,UNIT=disk,VOL=SER=333333,
 // DISP=OLD
 //SEQ1 DD DSNAME=SAVAC,UNIT=disk,VOL=SER=333333,
 // DISP=(NEW,KEEP),SPACE=(CYL,(5,2))
 //SEQ2 DD DSNAME=SAVACB,UNIT=tape,VOL=SER=Tð1911,
 // DISP=(NEW,KEEP),LABEL=(,SL)
 //NEWUP DD DSNAME=NEWACC,UNIT=tape,VOL=SER=Tð1219,
 // DISP=OLD,LABEL=(,SL)
 //MERGE DD DSNAME=ACCUPDAT,UNIT=disk,VOL=SER=222222,
 // DISP=OLD
 //SYSUT3 DD DSNAME=TEMP1,VOL=SER=666666,UNIT=disk,
 // DISP=(NEW,DELETE),SPACE=(8ð,(1,1))
 //SYSUT4 DD DSNAME=TEMP2,VOL=SER=666666,UNIT=disk,
 // DISP=(NEW,DELETE),SPACE=(256,(1,1)),DCB=(KEYLEN=8)
 //SYSIN DD \
 COPY OUTDD=SEQ1,INDD=PDS1
 EXCLUDE MEMBER=(D,C)
 COPY OUTDD=SEQ2,INDD=PDS2
 SELECT MEMBER=(A,K)
 COPY OUTDD=MERGE,INDD=((NEWUP,R),PDS1,PDS2)
 EXCLUDE MEMBER=A
 /\

The control statements are discussed below:

� PDS1 DD defines a partitioned data set called ACCOUNTA that contains six
members (A, B, C, D, E, and F).

� PDS2 DD defines a partitioned data set called ACCOUNTB that contains three
members (A, K, and L).

� SEQ1 DD defines a new sequential data set called SAVAC.

� SEQ2 DD defines a new sequential data set called SAVACB on a tape volume.
The tape has IBM standard labels.

� NEWUP DD defines an old sequential data set called NEWACC that is the
unloaded form of a partitioned data set that contains eight members (A, B, C,
D, M, N, O, and P). It resides on a tape volume.

� MERGE DD defines a partitioned data set called ACCUPDAT that contains six
members (A, B, C, D, Q, and R).

� SYSUT3 and SYSUT4 DD define temporary spill data sets.

� SYSIN DD defines the control data set, which follows in the input stream.

� The first COPY statement indicates the start of the first copy operation. The
OUTDD parameter specifies that SAVAC is the output data set, and the INNDD
parameter specifies that ACCOUNTA is the input data set. Because SAVAC is
a sequential data set, ACCOUNTA will be unloaded in this copy operation.

The EXCLUDE statement specifies that members D and C are not to be
unloaded to SAVAC with the rest of ACCOUNTA.

� The second COPY statement indicates the start of the second copy operation.
The OUTDD parameter specifies that SAVACB is the output data set, and the

74 DFSMS/MVS V1R5 Utilities

 IEBCOPY

INDD parameter specifies that ACCOUNTB is the input data set. Because
SAVACB is a sequential data set, ACCOUNTB will be unloaded in this copy
operation.

The SELECT statement specifies that members A and K are the only members
of ACCOUNTB that are to be unloaded to SAVACB.

� The third COPY statement indicates the start of the last copy operation. The
OUTDD parameter specifies that ACCUPDAT is the output data set. The
EXCLUDE statement specifies that member A is excluded from this copy oper-
ation. The three data sets specified in the INDD parameter will be processed as
follows:

1. The data set NEWACC is a sequential data set, so it is loaded into
ACCUPDAT. Because the replace option is specified, members B, C, and
D in NEWACC replace identically named members in ACCUPDAT. The
remaining members of NEWACC are also copied to ACCUPDAT, except
for A, which is excluded from the copy operation.

2. The data set ACCOUNTA is a partitioned data set, so its members are
copied to ACCUPDAT. Because replacement is not specified, only
members E and F are copied.

3. The data set ACCOUNTB is a partitioned data set, so its members are
copied to ACCUPDAT. Only members K and L are copied.

Example 10: Alter Load Modules in Place
In this example, all members of data set MODLIBJ, members MODX, MODY, and
MODZ of data set MODLIBK, and all members of data set MODLIBL except
MYMACRO and MYJCL are altered in place.

 //ALTERONE JOB ...
 //STEPA EXEC PGM=IEBCOPY
 //SYSPRINT DD SYSOUT=A
 //SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(5,1))
 //LIBJ DD DSNAME=MODLIBJ,DISP=(OLD,KEEP)
 //LIBK DD DSNAME=MODLIBK,DISP=(OLD,KEEP)
 //LIBL DD DSNAME=MODLIBL,DISP=(OLD,KEEP)
 //SYSIN DD \
 ALTERMOD OUTDD=LIBJ
 ALTERMOD OUTDD=LIBK,LIST=NO
 SELECT MEMBER=(MODX,MODY,MODZ)
 ALTERMOD OUTDD=LIBL
 EXCLUDE MEMBER=(MYMACRO,MYJCL)
 /\

The control statements are discussed below:

� LIBJ DD defines the partitioned data set MODLIBJ, which has been previously
created and cataloged.

� LIBK DD defines the partitioned data set MODLIBK, which has been previously
created and cataloged.

� LIBL DD defines the partitioned data set MODLIBL, which has been previously
created and cataloged.

� SYSIN DD defines the control data set, which follows in the input stream.

� The first ALTERMOD statement specifies that the entire data set defined in
LIBJ is to be altered in place.

 IEBCOPY (Library Copy) Program 75

 IEBCOPY

� The second ALTERMOD statement plus the following SELECT statement indi-
cates that members MODX, MODY, and MODZ are to be altered in place. The
remainder of MODLIBK is unchanged.

� The third ALTERMOD statement plus the following EXCLUDE statement indi-
cates that all of MODLIBL is to be altered in place except the members called
MYMACRO and MYJCL. These members remain unchanged.

Example 11: Replace a Load Module Using COPYMOD
In this example, a load module in an existing load library is replaced by another
module. The new module originally resides on a 3380 DASD device, whereas the
load library to which it is copied resides on a 3350. Because the module has a
block size larger than the largest block size that a 3350 can handle, the module
must be reblocked before it is added to the load library.

This example illustrates how you can transfer load modules between devices of dif-
ferent sizes. In this case, updated modules are created on a 3380 and tested
before being added to the load library for general use.

 //STEP1 EXEC PGM=IEBCOPY
 //REPLACE JOB ...
 //SYSPRINT DD SYSOUT=A
 //TESTLIB DD DSN=JOHNDOE.COBOL.TESTLOAD,DISP=SHR,UNIT=338ð,
 // VOL=SER=TESTð1,DCB=(BLKSIZE=2347ð)
 //PRODLIB DD DSN=PAYROLL.MASTER.LOADLIB,DISP=(OLD,KEEP)
 // UNIT=335ð,VOL=SER=PRODð1,DCB=(BLKSIZE=19ð69)
 //SYSIN DD \
 COPYMOD OUTDD=PRODLIB,INDD=TESTLIB
 SELECT MEMBER=((WAGETAX,,R))
 /\

The control statements are discussed below:

� TESTLIB DD defines a load library on a 3380 direct access device. It has a
block size of 23470.

� PRODLIB DD defines a load library on a 3350 direct access device. It has a
block size of 19069.

� SYSIN DD defines the control data set, which follows in the input stream.

� The COPYMOD statement identifies PAYROLL.MASTER.LOADLIB as the
output data set and JOHNDOE.COBOL.TESTLOAD as the input data set. The
SELECT statement indicates that the load module WAGETAX is to be copied
from the input data set and is to replace any member with that name that is in
the output data set. The member is also reblocked to 19069, which is the track
size of the 3350 direct access device on which the output data set resides.

Note that, in this case, COPYMOD has to be used in order to copy the member
WAGETAX into the PAYROLL.MASTER.LOADLIB. Because the original block size
of WAGETAX is larger than the largest block size that can reside on a 3350,
attempting this operation with the COPY statement would be unsuccessful. The
problem would be attributed to a DCB validation error because of incorrect block
size.

76 DFSMS/MVS V1R5 Utilities

 IEBCOPY

Example 12: Reblock Load Library and Distribute It to Different Device
Types

In this example, a load library is distributed (by copying it) to devices whose
maximum block size differs from that on which the original load library resides. The
library is first reblocked to a maximum block size that is compatible with each of the
devices to which the library will be copied. Then, the library is copied to those
devices.

This example illustrates how load libraries can be developed on one type of direct
access device and then distributed to other types of direct access devices.

 //RBLKCOPY JOB ...
 //REBLOCK EXEC PGM=IEBCOPY
 //SYSPRINT DD SYSOUT=A
//TESTED DD DSN=TESTED.MASTER.LOADLIB,DISP=SHR

 //STDSIZE DD DSN=PROGRAM.MASTER.LOADLIB,DISP=(OLD,KEEP),
 // UNIT=338ð,VOL=SER=PROGð1,DCB=(BLKSIZE=2347ð)
 //SYSIN DD \
 COPYMOD OUTDD=STDSIZE,INDD=TESTED,MAXBLK=13ð3ð
 /\
 //DISTRIB EXEC PGM=IEBCOPY
 //SYSPRINT DD SYSOUT=A
 //STDSIZE DD DSN=PROGRAM.MASTER.LOADLIB,DISP=SHR
 //LIB335ð DD DSN=PROGRAM.LIB335ð.LOADLIB,DISP=(OLD,KEEP),
 // UNIT=335ð,VOL=SER=PACKð1,DCB=(BLKSIZE=19ð69)
 //LIB333ð DD DSN=PROGRAM.LIB333ð.LOADLIB,DISP=(OLD,KEEP),
 // UNIT=333ð,VOL=SER=PACKð2,DCB=(BLKSIZE=13ð3ð)
 //SYSIN DD \
 COPY OUTDD=LIB335ð,INDD=STDSIZE
 COPY OUTDD=LIB333ð,INDD=STDSIZE
 /\

The control statements are discussed below:

� The REBLOCK EXEC statement begins the reblocking step.

� TESTED DD defines the cataloged load library TESTED.MASTER.LOADLIB.

� STDSIZE DD defines an existing data set, PROGRAM.MASTER.LOADLIB,
which resides on a 3380 direct access device and has a block size of 23470.

� The COPYMOD statement in the SYSIN data set specifies that
TESTED.MASTER.LOADLIB is to be merged into
PROGRAM.MASTER.LOADLIB. It also specifies that
PROGRAM.MASTER.LOADLIB is to be reblocked with a maximum block size
of 13030. This block size is chosen because it is small enough to fit on both
3350 and 3330 direct access devices.

� The DISTRIB EXEC statement begins the distribution step, where the
reblocked data set is copied to devices with different maximum block sizes.

� STDSIZE DD defines the same data set that was reblocked in the previous
step.

� LIB3350 DD defines the data set PROGRAM.LIB3350.LOADLIB, which resides
on a 3350 direct access device.

� LIB3330 DD defines the data set PROGRAM.LIB3330.LOADLIB, which resides
on a 3330 direct access device.

 IEBCOPY (Library Copy) Program 77

 IEBCOPY

� The COPY statements in the SYSIN data set specify that the data set
PROGRAM.MASTER.LOADLIB is to be copied to the output data sets without
being reblocked. If PROGRAM.MASTER.LOADLIB had not been reblocked to
the smaller block size, this step would end unsuccessfully.

Example 13: Convert a Partitioned Data Set to a PDSE
In this example, a partitioned data set is converted to a PDSE.

| //CONVERT JOB ...
| //STEP1 EXEC PGM=IEBCOPY
| //SYSPRINT DD SYSOUT=A
| //SYSUT1 DD DSNAME=PDSSET,DISP=SHR,DSNTYPE=PDS
| //SYSUT2 DD DSNAME=PDSESET,LIKE=PDSSET,DSNTYPE=LIBRARY,
| // DISP=(NEW,CATLG),STORCLAS=SCLASX,DATACLAS=DCLASY

The control statements are discussed below:

� SYSUT1 DD defines the input data set, PDS, which is a partitioned data
| set.The DSNTYPE keyword has no effect because it is an existing data set.

� SYSUT2 DD defines the output data set, PDSE, which is a partitioned data set
extended. All PDSEs must be managed by the Storage Management Sub-
system.

The LIKE parameter indicates that the DCB and SPACE attributes for
PDSESET are to be copied from PDSSET. The DSNTYPE parameter defines
the new data set as a PDSE rather than as a partitioned data set.

| DATACLAS=DCLASY identifies the PPDSE as a program object PDSE with
| undefined logical record length.

| The Storage Management Subsystem chooses an appropriate volume for the
| allocation, based on how SCLASX was defined.

� Since the ddnames “SYSUT1” and “SYSUT2” are used to define the input and
output data sets, no SYSIN data set is required.

Example 14: Copy Groups from a PDSE to a PDSE
In this example, members and their aliases (groups) are copied from a PDSE to a
PDSE (full data set copy). See “Copying Program Objects (COPYGRP Statement)”
on page 32 for information about copying groups.

 //CPYGRP JOB ...
 //STEP1 EXEC PGM=IEBCOPY
 //SYSPRINT DD SYSOUT=A
 //DDIN DD DSNAME=PDSESETA,DISP=SHR
 //DDOUT DD DSNAME=PDSESETB,LIKE=PDSESETB,DSNTYPE=LIBRARY,
 // DISP=(NEW,CATLG)
 //SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(1,1))
 //SYSIN DD \
 GROUPCPY COPYGRP INDD=DDIN,OUTDD=DDOUT
 /\

The control statements are discussed below:

� DDIN DD defines the input data set, PDSESETA, which is a partitioned data
set extended.

| DDOUT DD defines the output data set, PDSESETA, which is a partitioned
| data set extended.

78 DFSMS/MVS V1R5 Utilities

 IEBCOPY

All PDSEs must be managed by the Storage Management Subsystem.

The LIKE subparameter indicates that the DCB and SPACE attributes for
PDSESETB are to be copied from PDSESETA. The DSNTYPE subparameter
defines the new data set as a PDSE.

The Storage Management Subsystem chooses an appropriate volume for the
allocation.

� SYSUT3 DD defines a temporary spill data set.

� SYSIN DD defines the control data set, which follows in the input stream. The
data set contains a COPYGRP statement, an INDD statement, and an OUTDD
statement.

� COPYGRP indicates the start of the copy operation.

The INDD parameter shows PDSESETA as the input data set.

The OUTDD parameter shows PDSESETB as the output data set.

Example 15: Copy Groups from a PDSE to a PDSE with Replace
In this example, members and their aliases are copied in groups from a PDSE to a
PDSE with the replace (R) option. See “Replacing Program Objects” on page 33
for information about replacing groups with COPYGRP.

 //CPYGRP JOB ...
 //STEP1 EXEC PGM=IEBCOPY
 //SYSPRINT DD SYSOUT=A
 //DDIN DD DSNAME=PDSESETA,DISP=SHR
 //DDOUT DD DSNAME=PDSESETB,LIKE=PDSESETB,DSNTYPE=LIBRARY,
 // DISP=(NEW,CATLG)
 //SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(1,1))
 //SYSIN DD \
 GROUPCPY COPYGRP INDD=((DDIN,R)),OUTDD=DDOUT
 /\

The control statements are discussed below:

� DDIN DD defines the input data set, PDSE, which is a partitioned data set
extended.

DDOUT DD defines the output data set, PDSE, which is a partitioned data set
extended.

All PDSEs must be managed by the Storage Management Subsystem.

The LIKE parameter indicates that the DCB and SPACE attributes for
PDSESETB are to be copied from PDSESETA.

The DSNTYPE parameter defines the new data set as a PDSE.

The Storage Management Subsystem chooses an appropriate volume for the
allocation.

� SYSUT3 DD defines a temporary spill data set.

� SYSIN DD defines the control data set, which follows in the input stream. The
data set contains a COPYGRP statement, an INDD statement, and an OUTDD
statement.

� COPYGRP indicates the start of the copy operation.

 IEBCOPY (Library Copy) Program 79

 IEBCOPY

The ((INDD,R)) parameter shows PDSESETA as the input data set containing
members to replace members with the same name in PDSESETB.

The OUTDD parameter shows PDSESETB as the output data set.

Example 16: Copy a Selected Group from a PDSE to a PDSE
In this example, a selected member and its aliases are copied from a PDSE to a
PDSE. Either the member's name or a maximum of eight characters can be given
on the SELECT statement. See “Copying Program Objects (COPYGRP Statement)”
on page 32 for information about selecting groups on COPYGRP.

 //CPYGRP JOB ...
 //STEP1 EXEC PGM=IEBCOPY
 //SYSPRINT DD SYSOUT=A
 //DDIN DD DSNAME=PDSESETA,DISP=SHR
 //DDOUT DD DSNAME=PDSESETB,LIKE=PDSESETB,DSNTYPE=LIBRARY,
 // DISP=(NEW,CATLG)
 //SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(1,1))
 //SYSIN DD \
 GROUPCPY COPYGRP INDD=DDIN,OUTDD=DDOUT
 SELECT MEMBER=(ALIASðð1)
 /\

The control statements are discussed below:

� DDIN DD defines the input data set, PDSE, which is a partitioned data set
extended.

DDOUT DD defines the output data set, PDSE, which is a partitioned data set
extended.

All PDSEs must be managed by the Storage Management Subsystem.

The LIKE parameter indicates that the DCB and SPACE attributes for
PDSESETB are to be copied from PDSESETA.

The DSNTYPE parameter defines the new data set as a PDSE.

The Storage Management Subsystem chooses an appropriate volume for the
allocation.

� SYSUT3 DD defines a temporary spill data set.

� SYSIN DD defines the control data set, which follows in the input stream. The
data set contains a COPYGRP statement, an INDD statement, and an OUTDD
statement.

� COPYGRP indicates the start of the copy operation.

| The INDD parameter shows PDSESETA as the input data set.

The OUTDD parameter shows PDSESETB as the output data set.

� The SELECT statement indicates that a group that has the alias ALIAS001 is to
be selected from the input data set (PDSESETA) and copied to the output data
set (PDSESETB).

80 DFSMS/MVS V1R5 Utilities

 IEBDG

IEBDG (Test Data Generator) Program

IEBDG is a data set utility used to provide a pattern of test data to be used as a
programming debugging aid. This pattern of data can then be analyzed quickly for
predictable results.

You can create a data set without supplying any input data, or you can specify a
data set from which input data is to be taken. The data set you create may have
records of any format. Sequential or ISAM data sets, or members of partitioned
data sets or PDSEs, can be used for input or output.

IEBDG also gives you the option of specifying your own exit routine for monitoring
each output record before it is written.

When you define the contents of a field, the following must be decided:

� Which pattern is to be placed initially in the defined field. You can use your own
pattern, or a pattern supplied by IBM.

� What action, if any, is to be performed to alter the contents of the field after it is
selected for each output record.

If IEBDG is invoked from an application program, you can dynamically allocate the
data sets by issuing SVC 99 before calling IEBDG.

Selecting a Pattern

 IBM-Supplied Patterns
IBM supplies seven patterns:

 � Alphanumeric
 � Alphabetic
 � Zoned decimal
 � Packed decimal
 � Binary number
 � Collating sequence
 � Random number

You may choose one of them when defining the contents of a field. All patterns,
except the binary and random number patterns, repeat in a given field, provided
that the defined field length is sufficient to permit repetition. For example, the alpha-
betic pattern is:

 ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFG...

Figure 23 shows the IBM-supplied patterns.

Figure 23 (Page 1 of 2). IBM-Supplied Test Data Patterns

Type

Expressed in
Hexadecimal

Expressed in
Printable Characters

Alphanumeric C1C2...E9, F0...F9 AB...Z, 0...9

Alphabetic C1C2...E9 AB...Z

 Copyright IBM Corp. 1979, 1999 81

 IEBDG

A 4-byte packed decimal or binary number is right-aligned in the defined field. The
remainder of the field will contain the fill character.

You can specify a starting character when defining an alphanumeric, alphabetic, or
collating-sequence field. For example, a 10-byte alphabetic field for which “H” is
specified as the starting character would appear as:

 HIJKLMNOPQ

The same 10-byte alphabetic field with no specified starting character would appear
as:

 ABCDEFGHIJ

You can specify a mathematical sign when defining a packed decimal or binary
field. If no sign is specified, the field is assumed to be positive.

Figure 23 (Page 2 of 2). IBM-Supplied Test Data Patterns

Type

Expressed in
Hexadecimal

Expressed in
Printable Characters

Zoned Decimal F0F0...F9F9 00...99

Packed Decimal 0000...001C
(Positive pattern)
0000...001D
(Negative pattern)

Not applicable

Binary Number 00000001
(Positive pattern)
FFFFFFFF
(Negative pattern)

Not applicable

Collating
Sequence

40...F9 ␣¢.<(+|&!$*);¬-/,%_>?:'="
A...Z 0...9

Random Number Random hexadecimal
digits

Not applicable

 User-Specified Patterns
Instead of selecting an IBM-supplied pattern, you may want to specify your own
pattern to be placed in the defined field. You can provide:

� A character string
� A decimal number to be converted to packed decimal by IEBDG
� A decimal number to be converted to binary by IEBDG

When you supply a pattern, a pattern length must be specified that is equal to or
less than the specified field length. A character pattern is left-aligned in a defined
field; a decimal number that is converted to packed decimal or to binary is right-
aligned in a defined field.

You can initially fill a defined field with either a character or a hexadecimal digit. For
example, the 10-byte pattern “BADCFEHGJI” is to be placed in a 15-byte field. The
character “2” is to be used to pad the field. The result is BADCFEHGJI22222. (If no
fill character is provided, the remaining bytes contain binary zeros.) The fill char-
acter, if specified, is written in each byte of the defined field before the inclusion of
any pattern.

82 DFSMS/MVS V1R5 Utilities

 IEBDG

Modifying Fields in a Record
You can use IEBDG to change the contents of a field in a specified manner. One
of the following actions can be selected to change a field after its inclusion in each
applicable output record:

 � Ripple
 � Shift left
 � Shift right
 � Truncate left
 � Truncate right
 � Fixed
 � Roll
 � Wave

Figure 24 shows the effects of each of the actions on a 6-byte alphabetic field.
Note that the roll and wave actions are applicable only when you use one of your
own patterns. In addition, the result of a ripple action depends on which type of
pattern (IBM-supplied or user-supplied) is used.

Figure 24. IEBDG Actions

If no action is selected, or if the specified action is not compatible with the format,
the fixed action is assumed by IEBDG.

 IEBDG (Test Data Generator) Program 83

 IEBDG

Input and Output
IEBDG uses the following input:

� An input data set that contains records to be used in the construction of an
output data set or member of a partitioned data set or PDSE. The input data
sets are optional; that is, output records can be created entirely from utility
control statements.

� A control data set that contains any number of sets of utility control statements.

IEBDG produces the following output:

� An output data set that is the result of the IEBDG operation. One output data
set is created by each set of utility control statements included in the job step.

� A message data set that contains informational messages, the contents of
utility control statements, and any error messages.

Input and output data sets may be sequential, indexed sequential (ISAM), or
members of a partitioned data set or PDSE. BDAM and VSAM are not supported.

See Appendix A for IEBDG return codes.

 Control
IEBDG is controlled by job and utility control statements. The job control statements
process IEBDG and define the data sets used and produced by IEBDG. Utility
control statements are used to control the functions of the program and to define
the contents of the output records.

Job Control Statements
Figure 25 shows the job control statements for IEBDG.

Both input and output data sets can contain fixed, variable, or undefined records.

Figure 25. Job Control Statements for IEBDG

Statement Use

JOB Starts the job.

EXEC Specifies the program name (PGM=IEBDG) or, if the job control state-
ments reside in a procedure library, the procedure name.

SYSPRINT DD Defines a sequential data set for messages. The data set can be written
on a system output device, a tape volume, or a DASD volume.

anyname1 DD Defines an optional input data set or member of a data set. Any number
of these statements (each having a ddname different from all other
ddnames in the job step) can be included in the job step.

anyname2 DD Defines an output data set or member of a data set. Any number of
these DD statements can be included per job step; however, only one
statement is applicable per set of utility control statements.

SYSIN DD Defines the control data set, which contains the utility control statements
and, optionally, input records. The data set normally resides in the input
stream; however, it can be defined as a sequential data set or as a
member of a partitioned data set or PDSE.

84 DFSMS/MVS V1R5 Utilities

 IEBDG

 EXEC Statement
The EXEC statement can include an optional PARM parameter to specify the
number of lines to be printed between headings in the message data set.

The syntax of the EXEC statement is:

where:

PGM=IEBDG
specifies that you want to run the IEBDG program.

PARM='LINECT=nnnn'
specifies the number of lines to be printed per page on the output listing. The
number is a 4-digit decimal number from 0000 to 9999.

If PARM is omitted, 58 lines are printed between headings (unless a channel
12 punch is encountered in the carriage control tape, in which case a skip to
channel 1 is performed and a heading is printed).

Figure 26. Syntax of EXEC statement

//[stepname] EXEC PGM=IEBDG[,PARM= 'LINECT=nnnn']

SYSPRINT DD Statement
If the SYSPRINT DD statement is omitted, no messages are written. The block size
for the SYSPRINT data set must be a multiple of 121. Any blocking factor can be
specified.

anyname1 DD Statement
You can use any number of data sets or members as input for IEBDG. You must
code a separate DD statement for each data set or member.

You cannot, for instance, use two members of a partitioned data set by only coding
one DD statement for the data set. If the input data set is a member of a partitioned
data set or PDSE, you must code the DD statement so that it refers to that
member. Do this by coding the data set name parameter as
DSNAME=datasetname(membername).

You can also specify a sequential or ISAM data set as an input data set. If you are
using an ISAM data set, specify the key length and DSORG=IS in the DCB param-
eter.

anyname2 DD Statement
You can create any number of data sets in one use of IEBDG. You must code a
separate DD statement for each data set or member you are creating. The data
sets or members must be new.

If you are creating a new member of a partitioned data set or PDSE, the DD state-
ment must refer to that specific member. Do this by coding the data set name
parameter as DSNAME=datasetname(membername).

You can also create sequential or ISAM data sets. If you identify the same sequen-
tial data set for input and output in one operation, the utility might destroy some
input data before it is read. This might cause I/O errors. They can be the same

 IEBDG (Test Data Generator) Program 85

 IEBDG

member of a partitioned data set because the utility writes the member in a dif-
ferent area of the data set.

Refer to DFSMS/MVS Using Data Sets for information on estimating space allo-
cations.

SYSIN DD Statement
The block size for the SYSIN data set must be a multiple of 80. Any blocking factor
can be specified.

Utility Control Statements
IEBDG is controlled by the following utility control statements:

Any number of sets of control statements can appear in a single job step. Each set
defines one data set. A set of control statements contains one DSD statement, any
number of FD, CREATE and REPEAT statements, and one END statement when
INPUT is omitted from the FD statements.

General continuation requirements for utility control statements are described in
“Continuing Utility Control Statements” on page 8.

Figure 27. IEBDG Utility Control Statements

Statement Use

DSD Specifies the ddnames of the input and output data sets. One DSD
statement must be included for each set of utility control statements.

FD Defines the contents and lengths of fields to be used in creating output
records.

REPEAT Specifies the number of times a CREATE statement or a group of
CREATE statements are to be used in generating output records.

CREATE Defines the contents of output records.

END Marks the end of a set of IEBDG utility control statements.

 DSD Statement
The DSD statement marks the beginning of a set of utility control statements and
specifies the data sets that IEBDG is to use as input. The DSD statement can be
used to specify one output data set and any number of input data sets for each
application of IEBDG.

The syntax of the DSD statement is:

where:

OUTPUT=(ddname)
specifies the ddname of the DD statement defining the output data set.

INPUT=(ddname1[,ddname2][,...])
specifies the ddnames of a DD statements defining data sets used as input to
the program. Any number of data sets can be included as input—that is, any
number of ddnames referring to corresponding DD statements can be coded.

[label]] DSD OUTPUT=(ddname)
[,INPUT=(ddname1[,ddname2][,....])]

86 DFSMS/MVS V1R5 Utilities

 IEBDG

Whenever ddnames are included on a continuation record, they must begin in
column 4.

The ddname SYSIN must not be coded in the INPUT parameter on the DSD
control statement. Each ddname should not appear more than once on any
control statement.

Each parameter should appear no more than once on any DSD statement.

 FD Statement
The FD statement defines the contents and length of a field that will be used sub-
sequently by a CREATE statement (or statements) to form output records. A
defined field within the input logical record may be selected for use in the output
records if it is referred to, by name, by a subsequent CREATE statement.

Figure 28 shows how the FD statement is used to specify a field in an input record
to be used in output records. The left-hand side of the figure shows that a field in
the input record beginning at byte 50 is selected for use in the output record. The
right-hand side of the figure shows that the field is to be placed at byte 20 in the
output record.

LENGTH
Same as input field

Output recordInput record

1 50 70 80 1 20 40 80

FD NAME=FIELD1,LENGTH=20,STARTLOC=20,FROMLOC=50,INPUT=INSET

Figure 28. Field Selected from the Input Record for Use in the Output Record

When selecting fields from an input record (FD INPUT=ddname), the field must be
defined by an FD statement within each set of utility control statements. In that
case, defined fields for field selection are not usable across sets of utility control
statements; such an FD record may be duplicated and used in more than one set
of utility control statements within the job step.

You can also indicate that a numeric field is to be modified after it has been
referred to n times by a CREATE statement or statements, that is, after n cycles, a
modification is to be made. A modification will add a number you supply to a field.

The syntax of the FD statement is:

 IEBDG (Test Data Generator) Program 87

 IEBDG

where:

NAME=name
specifies the name of the field defined by this FD statement.

LENGTH=length
specifies the length, in bytes, of the defined field. For variable records, the sum
of the field must be four less than the maximum record length. This is to
account for the four-byte record descriptor word.

If the INPUT parameter is specified, the LENGTH parameter overrides the
length of each input logical record. If the combination of FROMLOC and
LENGTH values is longer than the input record, the result is unpredictable.

For ACTION=RP or WV, the length is limited to 16383 bytes. For ACTION=RO,
the length is limited to 10922 bytes.

STARTLOC=starting-location
specifies a starting location (within all output records using this field) in which a
field is to begin. For example, if the first byte of an output record is chosen as
the starting location, the keyword is coded STARTLOC=1; if the tenth byte is
chosen, STARTLOC=10 is coded.

Default: The field will begin in the first available byte of the output record
(determined by the order of specified field names in the applicable CREATE
statement). For variable records, the starting location is the first byte after the
length descriptor.

FILL={ 'character'|X 'nn'}
specifies a value that is to be placed in each byte of the output record before
any other operation in the construction of the record. If the FILL keyword is also
specified on the CREATE statement, the FILL value on the CREATE statement
takes precedence. These values can be coded:

'character'
specifies a character that is to be converted to EBCDIC and placed in each
byte of the output record.

X'nn'
specifies 2 hexadecimal digits (for example, FILL=X'40', or FILL=X'FF')
to be placed in each byte of the output record.

Default: Binary zeros are placed in the output record.

Figure 29. Syntax of FD statement

[label] FD NAME=name
,LENGTH=length
[,STARTLOC= starting-location]
[,FILL= {'character|X'nn'}]
[,{FORMAT= pattern[, CHARACTER= character]|
 PICTURE=length, {'character-string'|P'n'|B}}]
[,SIGN=sign]
[,ACTION={FX |RO|RP|SL|SR|TL|TR|WV}
[,INDEX=n[,CYCLEn][, RANGE= n]]
[,INPUT=ddname]
[,FROMLOC=number]

88 DFSMS/MVS V1R5 Utilities

 IEBDG

FORMAT=pattern[,CHARACTER= character]
specifies an IBM-supplied pattern that is to be placed in the defined field.
FORMAT must not be used when PICTURE is used. The values that can be
coded are:

pattern specifies the IBM-supplied patterns, as follows:

AL specifies an alphabetic pattern.
AN specifies an alphanumeric pattern.
BI specifies a binary pattern.
CO specifies a collating sequence pattern.
PD specifies a packed decimal pattern.
RA specifies a random binary pattern.
ZD specifies a zoned decimal pattern.

CHARACTER=character
specifies the starting character of a field. See “IBM-Supplied Patterns”
on page 81 for details on starting characters.

PICTURE=length,{'character-string'|P'n'|B'n'}
specifies the length and the contents of a user-supplied pattern. PICTURE must
not be used when FORMAT is used. If both PICTURE and NAME are omitted,
the fill character specified in the CREATE statement appears in each byte of
applicable output records. These values can be coded:

length
specifies the number of bytes that the pattern will occupy. Length must be
equal to or less than the LENGTH parameter value in the FD statement.

'character-string'
specifies a character string that is to be converted to EBCDIC and placed
in the applicable records. The character string is left-aligned at the defined
starting position. A character string may be broken in column 71, if you
place a nonblank character in column 72 and continue the string in column
4 of the next statement. The number of characters within the quotation
marks must equal the number specified in the length subparameter.

P'n'
specifies a decimal number that is to be converted to packed decimal and
right-aligned (within the boundaries of the defined length and starting byte)
in the output records or defined field. The number of characters within the
quotation marks must equal the number specified in the length subparam-
eter.

B'n'
specifies a decimal number that is to be converted to binary and right-
aligned (within the boundaries of the defined length and starting byte) in the
output records or defined field. The number of characters within the quota-
tion marks must equal the number specified in the length subparameter.

SIGN=sign
specifies a mathematical sign (+ or −), to be used when defining a packed
decimal or binary field.

Default: Positive (+).

 IEBDG (Test Data Generator) Program 89

 IEBDG

ACTION={FX|RO|RP|SL|SR|TL|TR|WV}
specifies how the contents of a defined field are to be altered (if at all) after the
field's inclusion in an output record.

See Figure 30 on page 91 for system actions compatible with FORMAT and
PICTURE values. See Figure 24 on page 83 for examples of IEBDG ACTION
patterns. These values can be coded:

FX specifies that the contents of a defined field are to remain fixed after the
field's inclusion in an output record.

FX is the default.

RO specifies that the contents of a defined field are to be rolled after the
field's inclusion in an output record. The pattern (“picture”) is moved to the
left by one byte for each output record, until the first nonblank character
of the picture is in the first byte of the field. Then, the picture is moved to
the right one byte for each output record, until it returns to its original
position in the field.

RO can be used only for a user-defined pattern. For RO to be effective,
the picture length must be less than the field length.

RP specifies that the contents of a defined field are to be rippled after the
field's inclusion in an output record.

SL specifies that the contents of a defined field are to be shifted left after the
field's inclusion in an output record.

SR specifies that the contents of a defined field are to be shifted right after
the field's inclusion in an output record.

TL specifies that the contents of a defined field are to be truncated left after
the field's inclusion in an output record.

TR specifies that the contents of a defined field are to be truncated right after
the field's inclusion in an output record.

WV specifies that the contents of a defined field are to be waved after the
field's inclusion in an output record. The pattern (“picture”) is moved to the
left by one byte for each output record, until the first nonblank character
of the picture is in the first byte of the field. Then the character string is
reset to its original position.

WV can be used only for a user-defined pattern. For WV to be effective,
the picture length must be less than the field length.

INDEX=n[,CYCLE=n][,RANGE= n]
specifies a decimal number to be added to this field whenever a specified
number of records have been written. INDEX is valid only with FORMAT pat-
terns ZD, PD and BI, or PICTURE patterns P'n' and n . Additional values can
be coded:

CYCLE=n
specifies a number of output records (to be written as output or made avail-
able to an exit routine) that are treated as a group by the INDEX keyword.
Whenever this field has been used in the construction of the specified
number of records, it is modified as specified in the INDEX parameter. For
example, if CYCLE=3 is coded, output records may appear as 111 222 333

90 DFSMS/MVS V1R5 Utilities

 IEBDG

444, and so forth. This parameter can be coded only when INDEX is
coded.

RANGE=n
specifies an absolute value which the contents of this field can never
exceed. If an index operation tries to exceed the specified absolute value,
the contents of the field as of the previous index operation are used.

Default: No indexing is performed. If CYCLE is omitted and INDEX is coded, a
CYCLE value of 1 is assumed; that is, the field is indexed after each inclusion
in a potential output record.

INPUT=ddname
specifies the ddname of a DD statement defining a data set used as input for
field selection. Only a portion of the record described by the FD statement will
be placed in the output record. If the record format of the output data set indi-
cates variable-length records, the position within the output record will depend
upon where the last insertion into the output record was made unless
STARTLOC is specified.

The ddname SYSIN must not be coded in the INPUT parameter on the FD
control statement. Each ddname should not appear more than once on any
control statement.

A corresponding ddname must also be specified in the associated CREATE
statement in order to have the input records read.

FROMLOC=number
specifies the location of the selected field within the input logical record. The
number represents the position in the input record. If, for example,
FROMLOC=10 is coded, the specified field begins at the tenth byte; if
FROMLOC=1 is coded, the specified field begins at the first byte. (For variable-
length records, significant data begins in the first byte after the 4-byte length
descriptor.)

When retrieving data sets with fixed or fixed-blocked record formats and
RKP>0, the record consists of the key plus the data with embedded key. To
copy the entire record, the output logical record length has to be the input
logical record length plus the key length. If only the data (which includes the
embedded key) is to be copied, set FROMLOC equal to the keylength.

Default: The start of the input record.

Usage notes for FD: Some of the FD keywords do not apply when you select
certain patterns or pictures; for example, the INDEX, CYCLE, RANGE, and SIGN
parameters are used only with numeric fields. Figure 30 shows which IEBDG
keywords can be used with which patterns. Each keyword should appear no more
than once on any FD statement.

Figure 30 (Page 1 of 2). Compatible IEBDG Operations

FORMAT/PICTURE Value Compatible Parameters

FORMAT=AL (alphabetic)
FORMAT=AN (alphanumeric)
FORMAT=CO (collating sequence)

ACTION=SL (shift left)
ACTION=SR (shift right)
ACTION=TL (truncate left)
ACTION=TR (truncate right)
ACTION=FX (fixed)
ACTION=RP (ripple)

 IEBDG (Test Data Generator) Program 91

 IEBDG

Figure 30 (Page 2 of 2). Compatible IEBDG Operations

FORMAT/PICTURE Value Compatible Parameters

FORMAT=ZD (zoned decimal)
FORMAT=PD (packed decimal)
FORMAT=BI (binary)

INDEX=n
CYCLE=n
RANGE=n
SIGN=nñ
SIGN=n(1)

PICTURE=P'n' (packed decimal)
PICTURE=
n
 (binary)

INDEX=n
CYCLE=n
RANGE=n
SIGN=n

PICTURE='string' (EBCDIC) ACTION=SL (shift left)
ACTION=SR (shift right)
ACTION=TL (truncate left)
ACTION=TR (truncate right)
ACTION=FX (fixed)
ACTION=RP (ripple)
ACTION=WV (wave)
ACTION=RO (roll)

Note: ñ Zoned decimal numbers (ZD) do not include a sign. (1) Zoned decimal numbers
(ZD) do not include a sign.

 REPEAT Statement
The REPEAT statement specifies the number of times a CREATE statement or
group of CREATE statements is to be used repetitively in the generation of output
records. The REPEAT statement precedes the CREATE statements to which it
applies. The syntax of the REPEAT statement is:

where:

QUANTITY=number
specifies the number of times the defined group of CREATE statements is to
be used repetitively. This number cannot exceed 65,535.

CREATE=number
specifies the number of following CREATE statements to be included in the
group.

Default: Only the first CREATE statement is repeated.

Figure 31. Syntax of REPEAT statement

[label] REPEAT QUANTITY=number[,CREATE=number]

 CREATE Statement
The CREATE statement defines the contents of a record to be written directly as an
output record or to be made available to an exit routine you supply. An output
record is constructed by referring to previously defined fields by name or by pro-
viding a pattern (“picture”) to be placed in the record. You can generate multiple
records with a single CREATE statement.

An output record is constructed in the following order:

1. A fill character, specified or default (binary zero), is initially loaded into each
byte of the output record.

92 DFSMS/MVS V1R5 Utilities

 IEBDG

2. If the INPUT operand is specified on the CREATE statement, and not on an FD
statement, the input records are left-aligned in the corresponding output record.

3. If the INPUT operand specifies a ddname in any FD statement, only the fields
described by the FD statement(s) are placed in the output record.

4. FD fields, if any, are placed in the output record in the order of the appearance
of their names in the CREATE statement. The location of the fields in the
output record depends upon whether the field has a specified starting location
(STARTLOC).

For instance, if you do not specify a starting location for any field, the fields will
be placed in order in the output record, starting at the first position of the output
record. Figure 32 shows the addition of field X to two different records. In
record 1, field X is the first field referred to by the CREATE statement; there-
fore, field X begins in the first byte of the output record. In record 2, two fields,
field A and field B, have already been referred to by a CREATE statement; field
X, the next field referred to, begins immediately after field B. Field X does not
have a special starting location in this example.

Field X

Field A Field B Field X

1

1

80

80

21

21 41 61

Record 2:

Record 1:

CREATE NAME=(A,B,X)

CREATE NAME=X

Figure 32. Default Placement of Fields within an Output Record Using IEBDG

If FD fields have starting locations specified explicitly, each field will be placed
in the output record beginning at the location specified. These fields will be
written to the output record in the order they appear on the CREATE statement.
Thus, if a field has the same starting location as another field, or has a starting
location that overlaps another field, the field that appears later on the CREATE
statement will be the field whose contents will occupy those positions.
Figure 33 on page 94 shows an example of two fields with specified starting
locations that result in an overlap of the fields.

 IEBDG (Test Data Generator) Program 93

 IEBDG

FD NAME=FIELD1,LENGTH=30,STARTLOC=20,..
 FD NAME=FIELD2,LENGTH=40,STARTLOC=40,...
 CREATE NAME=(FIELD1,FIELD2)

FIELD1

1 8020 40 50

FD NAME=FIELD1,LENGTH=30,STARTLOC=20,...
FD NAME=FIELD2,LENGTH=40,STARTLOC=40,...
CREATE NAME=(FIELD1,FIELD2)

FIELD2

Figure 33. Placement of Fields with Specified Output Locations

If some fields specify a starting location and others do not, the location of the
fields will depend on the order in which you specify them in the CREATE state-
ment. A field with an unspecified starting location will begin immediately fol-
lowing the last record written.

For instance, Figure 34 shows how two fields, one with a starting location
specified and one without, are written to an output record. Record 1 shows
FIELD1, with a specified starting location, written first. FIELD1 starts at location
20, and occupies 20 bytes. FIELD2 is then written next, and so begins at posi-
tion 40. Record 2 shows FIELD2, with an unspecified starting location, written
first. FIELD2 is placed starting at the first position of the output record. FIELD1
is then placed at position 20, even though it overlaps FIELD2, which has a
length of 30.

FD NAME=FIELD1,LENGTH=20,STARTLOC=20,...

FD NAME=FIELD2,LENGTH=30,...

FIELD1 FIELD2

FIELD2

1

1

80

80

20 40 70

20 4030 70

Record 2:

Record 1:

CREATE NAME=(FIELD2,FIELD1)

CREATE NAME=(FIELD1,FIELD2)

FD NAME=FIELD1,LENGTH=20,STARTLOC=20,...
FD NAME=FIELD2,LENGTH=30,...

FIELD1

Figure 34. Placement of Fields with Only Some Output Locations Specified

5. A CREATE statement picture, if any, is placed in the output record.

Figure 35 on page 95 shows three ways in which output records can be created
from utility control statements.

94 DFSMS/MVS V1R5 Utilities

 IEBDG

CREATE

CREATE

CREATE

1

2

1

3

3

2

5

Picture

Picture

3 4 5

1. Fields only

2. Fields and
picture

3. Picture
only

Output record

Output record

Previously
defined fields

Figure 35. Creating Output Records with Utility Control Statements

When defining a picture in a CREATE statement, you must specify its length and
starting location in the output record. The specified length must be equal to the
number of specified alphabetic or numeric characters. (When a specified decimal
number is converted to packed decimal or binary, it is automatically right-aligned.)

You can use another data set as a source for input records for creating output
records, or you can include input records in the input stream or SYSIN data set.
Only one input data set can used for an individual CREATE statement.

The syntax of the CREATE statement is:

where:

Note: Each keyword should appear no more than once on any CREATE state-
ment.

QUANTITY=n
specifies the number of records that this CREATE statement is to generate; the
contents of each record are specified by the other parameters. If both QUAN-
TITY and INPUT are coded, and the quantity specified is greater than the
number of records in the input data set, the number of records created is equal

Figure 36. Syntax of CREATE statement

[label] CREATE [QUANTITY=n]
[,FILL={ 'character'|X'nn'}]
[,INPUT={ddname|SYSIN[({cccc|$$$E})]}]
[,PICTURE=length,startloc,
 {'character-string'| P'n'|B'n'}]
[,NAME={(namelist)|
 (namelist-or-(copygroup))}
,EXIT=routinename]

 IEBDG (Test Data Generator) Program 95

 IEBDG

to the number of input records to be processed plus the generated data up to
the specified number.

Default: If QUANTITY is omitted and INPUT is not specified, only one output
record is created. If QUANTITY is omitted and INPUT is specified, the number
of records created is equal to the number of records in the input data set.

If both QUANTITY and INPUT are coded, but the QUANTITY is less than the
number of records in the input data set, then only the number of records speci-
fied by QUANTITY are written to the output data set.

FILL={ 'character'|X'nn'}
specifies a value that is to be placed in each byte of the output record before
any other operation in the construction of a record. This value overrides the
FILL keyword specified in an FD statement. These values can be coded:

'character'
specifies a character that is to be translated to EBCDIC and placed in each
byte of the output record.

X'nn'
specifies 2 hexadecimal digits (for example, FILL=X'40', or FILL=X'FF')
to be placed in each byte of the output record.

Default: Binary zeros (X'00') are placed in the output record.

INPUT={ddname|SYSIN[({cccc|$$$E})]}
defines an input data set whose records are to be used in the construction of
output records. If INPUT is coded, QUANTITY should also be coded, unless
the remainder of the input records are all to be processed by this CREATE
statement. If INPUT is specified in an FD statement referenced by this
CREATE statement, there must be a corresponding ddname specified in the
CREATE statement in order to get the input records read. These values can be
coded:

ddname
specifies the ddname of a DD statement defining an input data set.

SYSIN[({cccc|$$$E})]
specifies that the SYSIN data set contains records (other than utility control
statements) to be used in the construction of output records. If SYSIN is
coded, the input records follow this CREATE statement (unless the
CREATE statement is in a REPEAT group, in which case the input records
follow the last CREATE statement of the group). The “cccc” value can be
any combination of from 1 to 4 characters. If cccc is coded, the end of the
input records is indicated by a record containing those characters beginning
in column 1.

The default value for cccc is $$$E. If you do not code a value for cccc
when you use INPUT=SYSIN, you must use $$$E to mark the end of the
input records in SYSIN.

PICTURE=length,startloc,{'character-string'|P'n'|B'n'}
specifies the length, starting position and the contents of a user-supplied
pattern. If both PICTURE and NAME are omitted, the fill character specified in
the CREATE statement appears in each byte of applicable output records.
These values can be coded:

96 DFSMS/MVS V1R5 Utilities

 IEBDG

length
specifies the number of bytes that the pattern (“picture”) will occupy. Length
must be equal to or less than the LENGTH parameter value in the FD
statement.

startloc
specifies a starting position (within any applicable output record) in which
the picture is to begin.

'character-string'
specifies a character string that is to be placed in the applicable records.
The character string is left-aligned at the defined starting position. A char-
acter string may be broken in column 71, if you place a nonblank character
in column 72 and continue the string in column 4 of the next statement.

P'n'
specifies a decimal number that is to be converted to packed decimal and
right-aligned (within the boundaries of the defined length and starting posi-
tion) in the output records or defined field.

B'n'
specifies a decimal number that is to be converted to binary and right-
aligned (within the boundaries of the defined length and starting position) in
the output records or defined field.

NAME={(namelist)|(namelist-or-(copygroup))}
specifies the name or names of previously defined fields to be included in the
applicable output records. If both NAME and PICTURE are omitted, the fill
character specified in the CREATE statement appears in each byte of the appli-
cable output record. These values can be coded:

(namelist)
specifies the name or names of a field or fields to be included in the appli-
cable output records. Multiple field names must be separated with commas.
Each field (previously defined in the named FD statement) is included in an
output record in the order in which its name is encountered in the CREATE
statement. If only one name is coded, the parentheses are optional.

(namelist-or-(copygroup))
specifies that some or all fields are to be copied in the output records; that
is, selected fields are to appear in an output record more than once. The
copied fields are specified as:

(COPY=n,name1[,name2][,...])
where n specifies that the fields indicated are to be treated as a group
and copied n number of times in each output record produced by this
CREATE statement. Any number of copygroups can be included with
NAME. A maximum of 20 field names can be included in a copygroup.

The names of fields that are not to be copied can be specified with
copygroups in the NAME parameter, either before, after, or between
copygroups.

For example:

NAME=(NAME1,(COPY=2,NAME2),NAME3,(COPY=4,NAME4)).

 IEBDG (Test Data Generator) Program 97

 IEBDG

EXIT=routinename
specifies the name of your routine that is to receive control from IEBDG before
writing each output record. For information about specifying an exit routine with
IEBDG, see Appendix C, “Specifying User Exits with Utility Programs” on
page 389.

 END Statement
The END statement is used to mark the end of a set of utility control statements.
Each set of control statements can pertain to any number of input data sets but
only to a single output data set.

The syntax of the END statement is:

Figure 37. Syntax of END statement

[label] END

 IEBDG Examples
The following examples illustrate some of the uses of IEBDG. Figure 38 can be
used as a quick-reference guide to IEBDG examples. The numbers in the
“Example” column refer to examples that follow.

Figure 38. IEBDG Example Directory

Operation Data Set Organiza-
tion

Device Comments Example

Create output
records from
utility control
statements

Sequential Disk Blocked output. 3

Create parti-
tioned members
from utility
control state-
ments

Partitioned Disk Blocked output. One set of utility
control statements per member.

5

Modify records
from partitioned
members and
input stream

Partitioned,
Sequential

Disk Reblocking is performed. Each block
of output records contains ten modi-
fied partitioned input records and two
input stream records.

4

Place binary
zeros in selected
fields.

Sequential Tape Blocked input and output. 1

Ripple alphabetic
pattern

Sequential Tape, Disk Blocked input and output. 2

Roll and wave
user-supplied
patterns

Sequential Disk Output records are created from
utility control statements.

6

Examples that use disk or tape in place of actual device numbers must be
changed before use. The actual device numbers depend on how your installation
has defined the devices to your system.

98 DFSMS/MVS V1R5 Utilities

 IEBDG

Example 1: Place Binary Zeros in Records Copied from Sequential
Data Set

In this example, binary zeros are placed in two fields of 100 records copied from a
sequential data set. After the operation, each record in the copied data set
(OUTSET) contains binary zeros in locations 20 through 29 and 50 through 59.

 //CLEAROUT JOB ...
 //STEP1 EXEC PGM=IEBDG
 //SYSPRINT DD SYSOUT=A
 //SEQIN DD DSNAME=INSET,UNIT=tape,DISP=(OLD,KEEP),
 // DCB=(RECFM=FB,LRECL=8ð,BLKSIZE=8ðð),
 // LABEL=(,NL),VOLUME=SER=222222
 //SEQOUT DD DSNAME=OUTSET,UNIT=tape,DISP=(,KEEP),
 // DCB=(RECFM=FB,LRECL=8ð,BLKSIZE=8ðð),
 // VOLUME=SER=222333,LABEL=(,NL)
 //SYSIN DD \
 DSD OUTPUT=(SEQOUT),INPUT=(SEQIN)
 FD NAME=FIELD1,LENGTH=1ð,STARTLOC=2ð
 FD NAME=FIELD2,LENGTH=1ð,STARTLOC=5ð
 CREATE QUANTITY=1ðð,INPUT=SEQIN,NAME=(FIELD1,FIELD2)
 END
 /\

The control statements are discussed below:

� SEQIN DD defines a sequential input data set (INSET). The data set was ori-
ginally written on a unlabeled tape volume.

� SEQOUT DD defines the test data set (OUTSET). The output records are iden-
tical to the input records, except for locations 20 through 29 and 50 through 59,
which contain binary zeros at the completion of the operation.

� SYSIN DD defines the control data set, which follows in the input stream.

� DSD marks the beginning of a set of utility control statements and refers to the
DD statements defining the input and output data sets.

� The first and second FD statements create two 10-byte fields (FIELD1 and
FIELD2). Because no pattern is specified for these fields, each field contains
the default fill of binary zeros. The fields are to begin in the 20th and 50th bytes
of each output record.

� CREATE constructs 100 output records in which the contents of previously
defined fields (FIELD1, FIELD2) are placed in their respective starting locations
in each of the output records. Input records from data set INSET are used as
the basis of the output records.

� END signals the end of a set of utility control statements.

Example 2: Ripple 10-byte Alphabetic Pattern
In this example, a 10-byte alphabetic pattern is rippled. At the end of the job step
the first output record contains “ABCDEFGHIJ,” followed by data in location 11
through 80 from the input record; the second record contains “BCDEFGHIJK” fol-
lowed by data in locations 11 through 80, and so forth.

 IEBDG (Test Data Generator) Program 99

 IEBDG

 //RIPPLE JOB ...
 //STEP1 EXEC PGM=IEBDG
 //SYSPRINT DD SYSOUT=A
 //SEQIN DD DSNAME=INSET,UNIT=tape,VOL=SER=222222,
 // DCB=(RECFM=FB,LRECL=8ð,BLKSIZE=8ðð),DISP=(OLD,KEEP)
 //SEQOUT DD DSNAME=OUTSET,UNIT=disk,VOLUME=SER=111111,
 // DCB=(RECFM=FB,LRECL=8ð,BLKSIZE=8ðð),
 // DISP=(,KEEP),SPACE=(TRK,(1ð,1ð))
 //SYSIN DD \
 DSD OUTPUT=(SEQOUT),INPUT=(SEQIN)
 FD NAME=FIELD1,LENGTH=1ð,FORMAT=AL,ACTION=RP,STARTLOC=1
 CREATE QUANTITY=1ðð,INPUT=SEQIN,NAME=FIELD1
 END
 /\

The control statements are discussed below:

� SEQIN DD defines an input sequential data set (INSET). The data set was ori-
ginally written on a standard labeled tape volume.

� SEQOUT DD defines the test output data set (OUTSET). Ten tracks of primary
space and ten tracks of secondary space are allocated for the sequential data
set on a disk volume.

� SYSIN DD defines the control data set, which follows in the input stream.

� DSD marks the beginning of a set of utility control statements and refers to the
DD statements defining the input and output data sets.

� The FD statement creates a 10-byte field in which the pattern ABCDEFGHIJ is
initially placed. The data is rippled after each output record is written.

� CREATE constructs 100 output records in which the contents of a previously
defined field (FIELD1) are included. The CREATE statement uses input records
from data set INSET as the basis of the output records.

� END signals the end of a set of utility control statements.

Example 3: Create Output Records from Utility Control Statements
In this example, output records are created entirely from utility control statements.
Three fields are created and used in the construction of the output records. In two
of the fields, alphabetic data is truncated; the other field is a numeric field that is
incremented (indexed) by one after each output record is written. Figure 39 shows
the contents of the output records at the end of the job step.

ABCDEFGHIJKLMNOPQRSTUVWXYZABCD ABCDEFGHIJKLMNOPQRSTUVWXYZABCD
BCDEFGHIJKLMNOPQRSTUVWXYZABCD ABCDEFGHIJKLMNOPQRSTUVWXYZABC

CDEFGHIJKLMNOPQRSTUVWXYZABCD ABCDEFGHIJKLMNOPQRSTUVWXYZAB
DEFGHIJKLMNOPQRSTUVWXYZABCD ABCDEFGHIJKLMNOPQRSTUVWXYZA

EFGHIJKLMNOPQRSTUVWXYZABCD ABCDEFGHIJKLMNOPQRSTUVWXYZ

FF . . . FF 00 . . . 00 0123456789

0123456789
0123456789
0123456789
0123456789

FF . . . FF 00 . . . 00
FF . . . FF 00 . . . 00
FF . . . FF 00 . . . 00
FF . . . FF 00 . . . 00

0C

1C
2C
3C
4C

1 31 61 71 75 80

Field 1 Field 2 Fill Field 3 (packed decimal)

Figure 39. Output Records at Job Step Completion

100 DFSMS/MVS V1R5 Utilities

 IEBDG

 72
 //UTLYONLY JOB ...
 //STEP1 EXEC PGM=IEBDG
 //SYSPRINT DD SYSOUT=A
 //SEQOUT DD DSNAME=OUTSET,UNIT=disk,DISP=(,KEEP),
 // DCB=(RECFM=FB,LRECL=8ð,BLKSIZE=8ðð),
 // SPACE=(TRK,(1ð,1ð)),VOLUME=SER=111111
 //SYSIN DD DATA
 DSD OUTPUT=(SEQOUT)
 FD NAME=FIELD1,LENGTH=3ð,STARTLOC=1,FORMAT=AL,ACTION=TL
 FD NAME=FIELD2,LENGTH=3ð,STARTLOC=31,FORMAT=AL,ACTION=TR
 FD NAME=FIELD3,LENGTH=1ð,STARTLOC=71,PICTURE=1ð, X
 P'123456789ð',INDEX=1
 CREATE QUANTITY=1ðð,NAME=(FIELD1,FIELD2,FIELD3),FILL=X'FF'
 END
 /\

The control statements are discussed below:

� SEQOUT DD defines the test output data set. Ten tracks of primary space and
ten tracks of secondary space are allocated for the sequential data set on a
disk volume.

� SYSIN DD defines the control data set, which follows in the input stream.

� DSD marks the beginning of a set of utility control statements and refers to the
DD statement defining the output data set.

� FD defines the contents of three fields to be used in the construction of output
records. The first field contains 30 bytes of alphabetic data to be truncated left
after each output record is written. The second field contains 30 bytes of alpha-
betic data to be truncated right after each output record is written. The third
field is a 10-byte field containing a packed decimal number (1234567890) to be
increased by one after each record is written.

� CREATE constructs 100 output records in which the contents of previously
defined fields (FIELD1, FIELD2, and FIELD3) are included. Note that after each
record is written, FIELD1 and FIELD2 are restored to full width.

� END signals the end of a set of utility control statements.

Example 4: Use Members and Input Records as Basis of Output
Member

In this example, two partitioned members and input records from the input stream
are used as the basis of a partitioned output member. Each block of 12 output
records contains 10 modified records from an input partitioned member and two
records from the input stream. Figure 40 on page 102 shows the contents of the
output partitioned member at the end of the job step.

 IEBDG (Test Data Generator) Program 101

 IEBDG

Figure 40. Output Partitioned Member at Job Step Completion

102 DFSMS/MVS V1R5 Utilities

 IEBDG

 //MIX JOB ...
 //STEP1 EXEC PGM=IEBDG
 //SYSPRINT DD SYSOUT=A
 //PARIN1 DD DSNAME=INSET1(MEMBA),UNIT=disk,DISP=OLD,
 // DCB=(RECFM=FB,LRECL=8ð,BLKSIZE=8ðð,DSORG=PS),
 // VOLUME=SER=111111
 //PARIN2 DD DSNAME=INSET2(MEMBA),UNIT=disk,DISP=OLD,
 // DCB=(RECFM=FB,LRECL=8ð,BLKSIZE=96ð,DSORG=PS),
 // VOLUME=SER=222222
 //PAROUT DD DSNAME=PARSET(MEMBA),UNIT=disk,DISP=(,KEEP),
 // VOLUME=SER=333333,SPACE=(TRK,(1ð,1ð,5)),
 // DCB=(RECFM=FB,LRECL=8ð,BLKSIZE=96ð,DSORG=PO)
 //SYSIN DD DATA
 DSD OUTPUT=(PAROUT),INPUT=(PARIN1,PARIN2)
 FD NAME=FIELD1,LENGTH=13,PICTURE=13,'DEPARTMENT 21'
 REPEAT QUANTITY=1ð,CREATE=2
 CREATE QUANTITY=1ð,INPUT=PARIN1,NAME=FIELD1
 CREATE QUANTITY=2,INPUT=SYSIN

(input records 1 through 2ð)

 $$$E
 REPEAT QUANTITY=1ð,CREATE=2
 CREATE QUANTITY=1ð,INPUT=PARIN2,NAME=FIELD1
 CREATE QUANTITY=2,INPUT=SYSIN

(input records 21 through 4ð)

 $$$E
 END
 /\

The control statements are discussed below:

� PARIN1 DD defines one of the input partitioned members.

� PARIN 2 DD defines the second of the input partitioned members. (Note that
the members are from different partitioned data sets.)

� PAROUT DD defines the output partitioned member. This example assumes
that the partitioned data set does not exist before the job step; that is, this DD
statement allocates space for the partitioned data set.

� SYSIN DD defines the control data set, which follows in the input stream.

� DSD marks the beginning of a set of utility control statements and refers to the
DD statements defining the input and output data sets.

� FD creates a 13-byte field in which the picture “DEPARTMENT 21” is placed.

� The first REPEAT statement indicates that the following group of two CREATE
statements is to be repeated 10 times.

� The first CREATE statement creates 10 output records. Each output record is
constructed from an input record (from partitioned data set INSET1) and from
previously defined FIELD1.

� The second CREATE statement indicates that two records are to be con-
structed from input records included next in the input stream.

 IEBDG (Test Data Generator) Program 103

 IEBDG

� The $$$E record separates the input records from the REPEAT statement. The
next REPEAT statement group is identical to the preceding group, except that
records from a different partitioned member are used as input.

� END signals the end of a set of utility control statements.

Example 5: Create Records in Three Output Data Sets and Write them
to Three Partitioned Data Set Members

Note: This example will not work if the data sets are system managed or SMS
data sets.

In this example, output records are created from three sets of utility control state-
ments and written in three partitioned data set members. Four fields are created
and used in the construction of the output records. In two of the fields (FIELD1 and
FIELD3), alphabetic data is shifted. FIELD2 is fixed zoned decimal and FIELD4 is
fixed alphanumeric. Figure 41 shows the partitioned data set members at the end
of the job step.

Figure 41. Partitioned Data Set Members at Job Step Completion

104 DFSMS/MVS V1R5 Utilities

 IEBDG

 //UTSTS JOB ...
 //STEP1 EXEC PGM=IEBDG
 //SYSPRINT DD SYSOUT=A
 //PAROUT1 DD DSNAME=PARSET(MEMBA),UNIT=disk,DISP=(,KEEP),
 // VOLUME=SER=111111,SPACE=(TRK,(1ð,1ð,5)),
 // DCB=(RECFM=FB,LRECL=8ð,BLKSIZE=8ðð)
 //PAROUT2 DD DSNAME=PARSET(MEMBB),UNIT=AFF=PAROUT1,
 // DCB=(RECFM=FB,LRECL=8ð,BLKSIZE=8ðð)
 // DISP=OLD,VOLUME=SER=111111
 //PAROUT3 DD DSNAME=PARSET(MEMBC),UNIT=AFF=PAROUT1,
 // DCB=(RECFM=FB,LRECL=8ð,BLKSIZE=8ðð)
 // DISP=OLD,VOLUME=SER=111111
 //SYSIN DD DATA
 DSD OUTPUT=(PAROUT1)
 FD NAME=FIELD1,LENGTH=3ð,FORMAT=AL,ACTION=SL
 FD NAME=FIELD2,LENGTH=2ð,FORMAT=ZD
 FD NAME=FIELD3,LENGTH=2ð,FORMAT=AL,ACTION=SR
 FD NAME=FIELD4,LENGTH=3ð,FORMAT=AN
 CREATE QUANTITY=4,NAME=(FIELD1,FIELD3,FIELD2)
 END
 DSD OUTPUT=(PAROUT2)
 CREATE QUANTITY=4,NAME=(FIELD2,(COPY=3,FIELD3))
 END
 DSD OUTPUT=(PAROUT3)
 CREATE QUANTITY=4,NAME=(FIELD4,FIELD1)
 END
 /\

The control statements are discussed below:

� PAROUT1 DD defines the first member (MEMBA) of the partitioned output data
set. This example assumes that the partitioned data set does not exist before
this job step; that is, this DD statement allocates space for the data set.

� PAROUT2 and PAROUT3 DD define the second and third members, respec-
tively, of the output partitioned data set. Note that each DD statement specifies
DISP=OLD and UNIT=AFF=PAROUT1.

� SYSIN DD defines the control data set that follows in the input stream.

� DSD marks the beginning of a set of utility control statements and refers to the
DD statement defining the member applicable to that set of utility control state-
ments.

� FD defines the contents of a field that is used in the subsequent construction of
output records.

� CREATE constructs four records from combinations of previously defined fields.

� END signals the end of a set of utility control statements.

Example 6: Construct Records with Your Own Patterns
In this example, 10 fields containing user-supplied character patterns are used in
the construction of output records. After a record is written, each field is rolled or
waved, as specified in the applicable FD statement. Figure 42 on page 106 shows
the contents of the output records at the end of the job step.

 IEBDG (Test Data Generator) Program 105

 IEBDG

Figure 42. Contents of Output Records at Job Step Completion

 72
 //ROLLWAVE JOB ...
 //STEP1 EXEC PGM=IEBDG
 //SYSPRINT DD SYSOUT=A
 //OUTSET DD DSNAME=SEQSET,UNIT=disk,DISP=(,KEEP),
 // VOLUME=SER=SAMP,SPACE=(TRK,(1ð,1ð)),
 // DCB=(RECFM=FB,LRECL=8ð,BLKSIZE=8ðð)
 //SYSIN DD \
 DSD OUTPUT=(OUTSET)
 FD NAME=FIELD1,LENGTH=8,PICTURE=8,' AAAAA',ACTION=RO
 FD NAME=FIELD2,LENGTH=8,PICTURE=8,'BBBBB ',ACTION=RO
 FD NAME=FIELD3,LENGTH=8,PICTURE=8,'A AA ',ACTION=RO
 FD NAME=FIELD4,LENGTH=8,PICTURE=8,' BB B',ACTION=RO
 FD NAME=FIELD5,LENGTH=8,PICTURE=8,' AAA ',ACTION=RO
 FD NAME=FIELD6,LENGTH=8,PICTURE=8,' CCCCC',ACTION=WV

FD NAME=FIELD7,LENGTH=8,PICTURE=8,' DDDD ',ACTION=WV
FD NAME=FIELD8,LENGTH=8,PICTURE=8,' C CC ',ACTION=WV

 FD NAME=FIELD9,LENGTH=8,PICTURE=8,' DD D',ACTION=WV
 FD NAME=FIELD1ð,LENGTH=8,PICTURE=8,' CCC ',ACTION=WV
 CREATE QUANTITY=3ðð,NAME=(FIELD1,FIELD2,FIELD3, X
 FIELD4,FIELD5,FIELD6,FIELD7,FIELD8,FIELD9,FIELD1ð)
 END
 /\

The control statements are discussed below:

� OUTSET DD defines the output sequential data set on a disk volume. Ten
tracks of primary space and 10 tracks of secondary space are allocated to the
data set.

� SYSIN DD defines the control data set that follows in the input stream.

� DSD marks the beginning of a set of utility control statements and refers to the
DD statement defining the output data set.

� FD defines a field to be used in the subsequent construction of output records.
The direction and frequency of the initial roll or wave depend on the location of
data in the field.

106 DFSMS/MVS V1R5 Utilities

 IEBDG

� CREATE constructs 300 records from the contents of the previously defined
fields.

� END signals the end of a set of utility control statements.

 IEBDG (Test Data Generator) Program 107

 IEBDG

108 DFSMS/MVS V1R5 Utilities

 IEBEDIT

IEBEDIT (Edit Job Stream) Program

You can use IEBEDIT to create a data set containing a selection of jobs or job
steps. These jobs or job steps can be entered into the job stream at a later time for
processing.

You can edit and selectively copy an input job stream to an output data set using
IEBEDIT. The program can copy:

� An entire job or jobs, including JOB statements and any associated JOBLIB or
JOBCAT statements, and JES2 or JES3 control statements.

� Selected job steps, including the JOB statement, JES2 or JES3 control state-
ments following the JOB statement, and any associated JOBLIB or JOBCAT
statements.

All selected JOB statements, JES2 or JES3 control statements, JOBLIB or
JOBCAT statements, jobs, or job steps are placed in the output data set in the
same order as they appear in the input data set. A JES2 or JES3 control statement
or a JOBLIB or JOBCAT statement will be copied only if it follows a selected JOB
statement.

When IEBEDIT encounters a selected job step containing an input record having
the characters “..*” (period, period, asterisk) in columns 1 through 3, the program
automatically converts that record to a termination statement (/* statement) and
places it in the output data set.

A “/*nonblank” indicates a JES2 or JES3 control statement.

Input and Output
IEBEDIT uses the following input:

� An input data set, which is a sequential data set consisting of a job stream. The
input data set is used as source data in creating an output sequential data set.

� A control data set, which contains utility control statements that are used to
specify the organization of jobs and job steps in the output data set.

IEBEDIT produces the following output:

� An output data set, which is a sequential data set consisting of a resultant job
stream.

� A message data set, which is a sequential data set that contains applicable
control statements, error messages, if applicable, and, optionally, the output
data set.

See Appendix A for IEBEDIT return codes.

 Copyright IBM Corp. 1979, 1999 109

 IEBEDIT

 Control
IEBEDIT is controlled by job control statements and utility control statements. The
job control statements are required to run or load the program and to define the
data sets used and produced by the program. The utility control statements are
used to control the functions of the program.

Job Control Statements
Figure 43 shows the job control statements for IEBEDIT.

Figure 43. Job Control Statements for IEBEDIT

Statement Use

JOB Starts the job.

EXEC Specifies the program name (PGM=IEBEDIT) or, if the job control state-
ments reside in a procedure library, the procedure name.

SYSPRINT DD Defines a sequential data set for messages. The data set can be written
to a system output device, a tape volume, or a direct access volume.

SYSUT1 DD Defines a sequential input data set on a card reader, tape volume, or
direct access device.

SYSUT2 DD Defines a sequential output data set on a card punch, printer, tape
volume, or direct access device.

SYSIN DD Defines the control data set. The data set normally is included in the
input stream; however, it can be defined as a member of a procedure
library or as a sequential data set existing somewhere other than in the
input stream.

SYSPRINT DD Statement
The block size for the SYSPRINT data set must be a multiple of 121. If not, the job
step will be ended with a return code of 8.

SYSUT1, SYSUT2, and SYSIN DD Statements
The block size for the SYSIN, SYSUT1, and SYSUT2 data sets must be a multiple
of 80. Any blocking factor can be specified for these record sizes.

Any JES2 or JES3 control statement or JOBLIB DD statement that follows a
selected JOB statement in the SYSUT1 data set will be automatically copied to the
output data set. JES2 or JES3 control statements preceding the JOB statement are
assumed to belong to the previous job. JES2 or JES3 control statements preceding
the first JOB statement are included only if you request a total copy.

However, if the SYSUT1 data set is included in the input stream (SYSUT1 DD
DATA) JES2 or JES3 control statements are included only if a delimiter other than
“/*” is coded in the SYSUT1 DD DATA card. For a description of coding another
delimiter, see the publication OS/390 MVS JCL User's Guide. If another delimiter is
not coded, the first two characters of the JES2 or JES3 control statement will act as
a delimiter and end the SYSUT1 data set.

110 DFSMS/MVS V1R5 Utilities

 IEBEDIT

Utility Control Statement
IEBEDIT uses only one utility control statement, EDIT. Continuation requirements
for the statement are described in “Continuing Utility Control Statements” on
page 8.

You can use the EDIT statement to indicate which step or steps of a specified job
in the input data set you want included in the output data set. Any number of EDIT
statements can be included in an operation. Thus, you can create a data set with
any number of job steps in one operation.

EDIT statements must be included in the same order as the input jobs that they
represent. You can copy the entire input data set by omitting the EDIT statement.

The syntax of the EDIT statement is:

where:

START=jobname
specifies the name of the input job to which the EDIT statement applies. (Each
EDIT statement must apply to a separate job.) If START is specified without
TYPE and STEPNAME, the JOB statement and all job steps for the specified
job are included in the output.

Default: If START is omitted and only one EDIT statement is provided, the first
job encountered in the input data set is processed. If START is omitted from an
EDIT statement other than the first statement, processing continues with the
next JOB statement found in the input data set.

TYPE={POSITION|INCLUDE|EXCLUDE}
specifies the contents of the output data set. These values can be coded:

POSITION
specifies that the output is to consist of a JOB statement, the job step
specified in the STEPNAME parameter, and all steps that follow that job
step. All job steps preceding the specified step are omitted from the opera-
tion. POSITION is the default.

INCLUDE
specifies that the output data set is to contain a JOB statement and all job
steps specified in the STEPNAME parameter.

EXCLUDE
specifies that the output data set is to contain a JOB statement and all job
steps belonging to the job except those steps specified in the STEPNAME
parameter.

STEPNAME=(namelist)
specifies the names of the job steps that you want to process.

Namelist can be a single job step name, a list of step names separated by
commas, or a sequential range of steps separated by a hyphen (for example,
STEPA-STEPE). Any combination of these may be used in one namelist. If

[label] EDIT [START= jobname]
[,TYPE={POSITION|INCLUDE|EXCLUDE}]
[,STEPNAME=(namelist)]
[,NOPRINT]

 IEBEDIT (Edit Job Stream) Program 111

 IEBEDIT

more than one step name is specified, the entire namelist must be enclosed in
parentheses.

When coded with TYPE=POSITION, STEPNAME specifies the first job step to
be placed in the output data set. Job steps preceding this step are not copied
to the output data set.

When coded with TYPE=INCLUDE or TYPE=EXCLUDE, STEPNAME specifies
the names of job steps that are to be included in or excluded from the opera-
tion. For example, STEPNAME=(STEPA,STEPF-STEPL,STEPZ) indicates that
job steps STEPA, STEPF through STEPL, and STEPZ are to be included in or
excluded from the operation.

If STEPNAME is omitted, the entire input job whose name is specified on the
EDIT statement is copied. If no job name is specified, the first job encountered
is processed.

NOPRINT
specifies that the message data set is not to include a listing of the output data
set.

Default: The resultant output is listed in the message data set.

 IEBEDIT Examples
The following examples show some of the uses of IEBEDIT. Figure 44 can be used
as a quick-reference guide to these examples. The numbers in the “Example”
column refer to the examples that follow.

Figure 44. IEBEDIT Example Directory

Operation Devices Comments Example

EDIT Disk Copies JOB statement for JOBA, the job step STEPF, and all
steps that follow.

4

EDIT Disk and
Tape

Includes a job step from one job and excludes a job step from
another job.

3

EDIT Tape Copies one job into output data set. 1

EDIT Tape Selectively copies job steps from each of three jobs. 2

EDIT Tape Copies entire input data set. The “..*” record is converted to a
“/*” statement in the output data set.

5

EDIT Tape Copies entire input data set, including JES2 control statements. 6

Examples that use disk or tape in place of actual device numbers must be
changed before use. The actual device numbers depend on how your installation
has defined the devices to your system.

Example 1: Copy One Job
In this example, one job (JOBA), including all of its job steps, is copied into the
output data set. The input data set contains three jobs: JOBA, JOBB and JOBC.

112 DFSMS/MVS V1R5 Utilities

 IEBEDIT

 //EDIT1 JOB ...
 //STEP1 EXEC PGM=IEBEDIT
 //SYSPRINT DD SYSOUT=A
 //SYSUT1 DD DSNAME=INJOBS,UNIT=tape,
 // DISP=(OLD,KEEP),VOL=SER=ðð1234
 //SYSUT2 DD DSNAME=OUTTAPE,UNIT=tape,DISP=(NEW,KEEP),
 // VOL=SER=ðð1235,DCB=(RECFM=FB,LRECL=8ð,BLKSIZE=8ð),
 //SYSIN DD \
 EDIT START=JOBA
 /\

The control statements are discussed below:

� SYSUT1 DD defines the input data set, INJOBS. The data set resides on a
standard labeled tape volume (001234).

� SYSUT2 DD defines the output data set, called OUTTAPE. The data set is to
reside as the first data set on a standard labeled tape volume (001235). The
system will select an optimal block size.

� SYSIN DD defines the control data set, which follows in the input stream.

� EDIT indicates that JOBA is to be copied in its entirety.

Example 2: Copy Steps from Three Jobs
This example copies job steps from each of three jobs. The input data set contains
three jobs: JOBA, which includes STEPA, STEPB, STEPC, and STEPD; JOBB,
which includes STEPE, STEPF, and STEPG; and JOBC, which includes STEPH
and STEPJ.

 //EDIT2 JOB ...
 //STEP1 EXEC PGM=IEBEDIT
 //SYSPRINT DD SYSOUT=A
 //SYSUT1 DD DSN=INJOBS,DISP=(OLD,KEEP),VOLUME=SER=ðð1234,
 // UNIT=tape
 //SYSUT2 DD DSN=OUTSTRM,UNIT=tape,DISP=(NEW,KEEP),
 // DCB=(RECFM=F,LRECL=8ð,BLKSIZE=8ð),LABEL=(2,SL)
 //SYSIN DD \
 EDIT START=JOBA,TYPE=INCLUDE,STEPNAME=(STEPC,STEPD)
 EDIT START=JOBB,TYPE=INCLUDE,STEPNAME=STEPE
 EDIT START=JOBC,TYPE=INCLUDE,STEPNAME=STEPJ
 /\

The control statements are discussed below:

� SYSUT1 DD defines the input data set, INJOBS. The data set resides on a
standard labeled tape volume (001234).

� SYSUT2 DD defines the output data set, OUTSTRM. The data set is to reside
| as the second data set on a standard labeled tape volume (001235). The short
| block size is very inefficient.

� SYSIN DD defines the control data set, which follows in the input stream.

� The EDIT statements copy the JOB statements and job steps described as
follows:

1. The JOB statement and steps STEPC and STEPD for JOBA.
2. The JOB statement and STEPE for JOBB.
3. The JOB statement and STEPJ for JOBC.

 IEBEDIT (Edit Job Stream) Program 113

 IEBEDIT

Example 3: Include Step from One Job, Exclude Step from Another
This example includes a job step from one job and excludes a job step from
another job. The input data set contains three jobs: JOBA, which includes STEPA,
STEPB, STEPC, and STEPD; JOBB, which includes STEPE, STEPF, and STEPG;
and JOBC, which includes STEPH and STEPJ.

| //EDIT3 JOB ...
| //STEP1 EXEC PGM=IEBEDIT
| //SYSPRINT DD SYSOUT=A
| //SYSUT1 DD DSNAME=INSET,UNIT=disk,DISP=(OLD,KEEP),
| // VOLUME=SER=111111
| //SYSUT2 DD DSNAME=OUTTAPE,UNIT=tape,LABEL=(,NL),
| // DCB=(DEN=2,RECFM=FB,LRECL=8ð,BLKSIZE=816ð),
| // DISP=(,KEEP)
| //SYSIN DD \
| EDIT START=JOBB,TYPE=INCLUDE,STEPNAME=(STEPF-STEPG)
| EDIT START=JOBC,TYPE=EXCLUDE,STEPNAME=STEPJ
| /\

The control statements are discussed below:

� SYSUT1 DD defines the input data set, INSET. The data set resides on a disk
volume (111111).

� SYSUT2 DD defines the output data set, OUTTAPE. The data set is to reside
as the first or only data set on an unlabeled (800 bits per inch) tape volume.

� SYSIN DD defines the control data set, which follows in the input stream.

� The EDIT statements copy JOB statements and job steps as described below:

1. The JOB statement and steps STEPF and STEPG for JOBB.

2. The JOB statement and STEPH, excluding STEPJ, for JOBC.

Example 4: Copy Statement for JOBA and JOB STEPF
This example copies the JOB statement for JOBA, the job step STEPF, and all the
steps that follow it. The input data set contains one job (JOBA), which includes
STEPA through STEPL. Job steps STEPA through STEPE are not included in the
output data set.

| //EDIT4 JOB ...
| //STEP1 EXEC PGM=IEBEDIT
| //SYSPRINT DD SYSOUT=A
| //SYSUT1 DD DSNAME=INSTREAM,UNIT=disk,
| // DISP=(OLD,KEEP),VOLUME=SER=111111
| //SYSUT2 DD DSNAME=OUTSTREM,UNIT=disk,
| // DISP=(,KEEP),VOLUME=SER=222222,SPACE=(TRK,2)
| // DCB=(RECFM=FB,LRECL=8ð,BLKSIZE=24ððð),
| //SYSIN DD \
| EDIT START=JOBA,TYPE=POSITION,STEPNAME=STEPF
| /\

The control statements are discussed below:

� SYSUT1 DD defines the input data set, INSTREAM. The data set resides on a
disk volume (111111).

114 DFSMS/MVS V1R5 Utilities

 IEBEDIT

� SYSUT2 DD defines the output data set, OUTSTREAM. The data set is to
reside on a disk volume (222222). Two tracks are allocated for the output data
set.

� SYSIN DD defines the control data set, which follows in the input stream.

� EDIT copies the JOB statement for JOBA and job steps STEPF through
STEPL.

Example 5: Copy Entire Input Data Set
This example copies the entire input data set. The record containing the characters
“..*” in columns 1 through 3 is converted to a “/*” statement in the output data set.

 //EDIT5 JOB ...
 //STEP1 EXEC PGM=IEBEDIT
 //SYSPRINT DD SYSOUT=A
 //SYSUT2 DD DSNAME=OUTTAPE,UNIT=tape,
 // VOLUME=SER=ðð1234,DISP=(NEW,KEEP),
 // DCB=(RECFM=F,LRECL=8ð,BLKSIZE=8ð)
 //SYSIN DD DUMMY
 //SYSUT1 DD DATA
 //BLDGDGIX JOB ...
 // EXEC PGM=IEHPROGM
 //SYSPRINT DD SYSOUT=A
 //DD1 DD UNIT=disk,VOLUME=SER=111111,DISP=OLD
 //SYSIN DD \
 BLDG INDEX=A.B.C,ENTRIES=1ð,EMPTY
 ..\
 /\

The control statements are discussed below:

� SYSUT2 DD defines the output data set, OUTTAPE. The data set will be the
first data set on a tape volume (001234).

� SYSIN DD defines a dummy control data set.

� SYSUT1 DD defines the input data set, which follows in the input stream. The
job is stopped when the statement “/*” is encountered. (SYSUT1 therefore
includes the BLDGDGIX JOB statement, EXEC statement, SYSPRINT, DD1,
and SYSIN DD statements.)

Example 6: Copy Entire Data Set to Include New Delimiter
This example copies the entire input data set, including the JES2 control statement,
because a new delimiter (JP) has been coded. Otherwise, the “/*” in the JES2
control statement would have stopped the input.

 IEBEDIT (Edit Job Stream) Program 115

 IEBEDIT

 //EDIT6 JOB ...
 //STEP1 EXEC PGM=IEBEDIT
 //SYSPRINT DD SYSOUT=A
 //SYSUT2 DD DSN=TAPEOUT,UNIT=tape,
 // VOL=SER=ðð1234,LABEL=(,SL),DISP=(NEW,KEEP)
 // DCB=(RECFM=FB,LRECL=8ð,BLKSIZE=8ðð),
 //SYSIN DD DUMMY
 //SYSUT1 DD DATA,DLM=JP
 //LISTVTOC JOB ...
 /\MESSAGE JOB NEEDS VOLUME 338ððð
 //FSTEP EXEC PGM=IEHLIST
 //SYSPRINT DD SYSOUT=A
 //DD2 DD UNIT=disk,VOL=SER=111111,DISP=OLD
 //SYSIN DD \
 LISTVTOC FORMAT,VOL=disk=111111
 /\

The control statements are discussed below:

� SYSUT2 DD defines the output data set, TAPEOUT. The data set will be the
first data set on a standard label tape volume (001234).

� SYSIN DD defines a dummy control data set.

� SYSUT1 DD defines the input data set, which follows in the input stream. The
DLM parameter defines characters JP to act as a delimiter for the input data.

� IEBEDIT copies the JOB statement through the “/*” statement (including the
LISTVTOC and MESSAGE job statements, FSTEP EXEC statement, and
SYSPRINT, DD2 and SYSIN DD statements).

116 DFSMS/MVS V1R5 Utilities

 IEBGENER

IEBGENER (Sequential Copy/Generate Data Set) Program

You can use IEBGENER to:

| � Create a backup copy of a sequential data set, a member of a partitioned data
| set or PDSE or an HFS file.

� Produce a partitioned data set or PDSE, or a member of a partitioned data set
or PDSE, from a sequential data set or an HFS file.

� Expand an existing partitioned data set or PDSE by creating partitioned
members and merging them into the existing data set.

� Produce an edited sequential or partitioned data set or PDSE.

� Manipulate data sets containing double-byte character set data.

� Print sequential data sets, members of partitioned data sets or PDSEs or HFS
files.

� Reblock or change the logical record length of a data set.

� Copy user labels on sequential output data sets. (Refer to “Processing User
Labels” on page 394.)

� Supply editing facilities and exits for your routines that process labels, manipu-
late input data, create keys, and handle permanent input/output errors. Refer
to Appendix C, “Specifying User Exits with Utility Programs” on page 389, for a
discussion of linkage conventions for user exit routines.

Note: If you have the DFSORT product installed, you should be using ICEGENER
as an alternative to IEBGENER when making an unedited copy of a data
set or member. It may already be installed in your system under the name
IEBGENER. It generally gives better performance.

Creating a Backup Copy
You can produce a backup copy of a sequential data set or member of a parti-
tioned data set or PDSE by copying the data set or member to any IBM-supported
output device. For example, a copy can be made from tape to tape, from DASD to
tape, and so forth.

A data set that resides on a direct access volume can be copied to its own volume,
provided that you change the name of the data set.

Note: When using IEBGENER to process partitioned data sets as sequential data
sets, IEBGENER will not perform any directory entry processing (for
instance, copying attributes of members of load module libraries.)
IEBCOPY does perform directory entry processing.

Producing a Partitioned Data Set or PDSE from Sequential Input
Through the use of utility control statements, you can logically divide a sequential
data set into record groups and assign member names to the record groups.
IEBGENER places the newly created members in an output partitioned data set or
PDSE.

 Copyright IBM Corp. 1979, 1999 117

 IEBGENER

You cannot produce a partitioned data set or PDSE if an input or output data set
contains spanned records.

Figure 45 shows how a partitioned data set or PDSE is produced from a sequential
data set used as input. The left side of the figure shows the sequential data set.
Utility control statements are used to divide the sequential data set into record
groups and to provide a member name for each record group. The right side of the
figure shows the partitioned data set or PDSE produced from the sequential input.

LASTREC 1

LASTREC 2

LASTREC n

2

n

Record
group

1

Record
group

2

Record
group

n

Partitioned
output

Sequential
input

Utility control
statement names
first member

Utility control
statement names
new member

Utility control
statement identifies
last record

Utility control
statement names
new member

Directory
2 3 4 5 6 n

Member 1

1

LASTREC 1

LASTREC 2

LASTREC n

Utility control
statement identifies
last record

Figure 45. Creating a Partitioned Data Set or PDSE from Sequential Input Using
IEBGENER

Adding Members to a Partitioned Data Set or PDSE
You can use IEBGENER to add members to a partitioned data set or PDSE.
IEBGENER creates the members from sequential input and adds them to the data
set. The merge operation—the ordering of the partitioned directory—is automatically
performed by the program.

Figure 46 on page 119 shows how sequential input is converted into members that
are merged into an existing partitioned data set or PDSE. The left side of the figure
shows the sequential input that is to be merged with the partitioned data set or
PDSE shown in the middle of the figure. Utility control statements are used to
divide the sequential data set into record groups and to provide a member name for
each record group. The right side of the figure shows the expanded partitioned data

118 DFSMS/MVS V1R5 Utilities

 IEBGENER

set or PDSE. Note that members B, D, and F from the sequential data set were
placed in available space and that they are sequentially ordered in the partitioned
directory.

Existing
data set

Expanded
data set

Sequential
input

Directory
A B C D E F G

Member A

C

E

G

A C E G
Directory

Member
A

C

E

G

B

D

F

Available space

Member
B

Member
D

Member
F

LASTREC

LASTREC

Utility control
statements define
record groups
name members

Figure 46. Adding Members to a Partitioned Data Set or PDSE Using IEBGENER

Producing an Edited Data Set
You can use IEBGENER to produce an edited sequential or partitioned data set, or
PDSE. Through the use of utility control statements, you can specify editing infor-
mation that applies to a record, a group of records, selected groups of records, or
an entire data set.

An edited data set can be produced by:

� Rearranging or omitting defined data fields within a record.

� Supplying literal information as replacement data.

� Converting data from packed decimal to unpacked decimal mode, unpacked
decimal to packed decimal mode, or BCDIC (used here to mean the standard H
character set of binary coded decimal interchange code) to EBCDIC mode. For
more information on converting from BCDIC to EBCDIC, see DFSMS/MVS
Using Data Sets .

� Adding or deleting shift-out/shift-in characters X'0E' and X'0F' when double-
byte character set data is contained in the data set.

Figure 47 on page 120 shows part of an edited sequential data set. The left side of
the figure shows the data set before editing is performed. Utility control statements

 IEBGENER (Sequential Copy/Generate Data Set) Program 119

 IEBGENER

are used to identify the record groups to be edited and to supply editing informa-
tion. In this figure, literal replacement information is supplied for information within a
defined field. (Data is rearranged, omitted, or converted in the same manner.) The
BBBB field in each record in the record group is to be replaced by CCCC. The right
side of the figure shows the data set after editing.

Record
1

Record
2

Record
n

A
 A

 A
 A

 B
 B

 B
 B

 A
 A

 A
 A

 B
 B

 B
 B

 A
 A

 A

A
 A

 A
 A

 C
 C

 C
 C

 A
 A

 A
 A

 C
 C

 C
 C

 A
 A

 A

B
 B

 B
 A

 A
 A

 A
 B

 B
 B

 B

C
 C

 C
 A

 A
 A

 A
 C

 C
 C

 C

Utility Control statement.

Defines record group, contains
literal replacement data (CCCC).
Applies to all records within
the group.

Record
group

Figure 47. Editing a Sequential Data Set Using IEBGENER

IEBGENER cannot be used to edit a data set if the input and output data sets
consist of variable spanned (VS) or variable blocked spanned (VBS) records and
have equal block sizes and logical record lengths. In these cases, any utility control
statements that specify editing are ignored. That is, for each physical record read
from the input data set, the utility writes an unedited physical record on the output
data set.

Changing Logical Record Length
You can use IEBGENER to produce a reblocked output data set containing either
fixed-length or variable-length records having a logical record length that differs
from the input logical record length.

When you create a data set with a logical record length that differs from that of the
input data set, you must specify where each byte in the output records is to come
(either from literals or from input records). Any unspecified fields will contain unpre-
dictable data. You cannot alter the logical record length if both the input and output
data sets have variable or variable blocked record formats.

120 DFSMS/MVS V1R5 Utilities

 IEBGENER

Using IEBGENER with Double-Byte Character Set Data
You can use IEBGENER to copy, edit, reblock, or print data sets that contain
double-byte character set (DBCS) data. You can also convert sequential data sets
containing DBCS data to partitioned data sets. Double-byte character sets are used
to represent languages too complex to be represented with a single-byte character
set. Japanese, for example, requires a double-byte character set.

DBCS data is typically enclosed in shift-out/shift-in X'0E' and X'0F' single-byte
characters to indicate that the data must be handled as pairs of bytes and not
single bytes. Shift-out indicates that the data is now shifting out of a single-byte
character set string and into a double-byte character set string, and shift-in indi-
cates that a double-byte character set string is shifting into a single-byte character
set string. You can add or delete the shift-out/shift-in characters using IEBGENER.
If you add them to a data set, however, you must account for the additional bytes
they will require when you determine the logical record length of the output data
set. You can also validate DBCS data using IEBGENER.

DBCS data is not considered “valid” unless each byte of every character has a
value between X'41' and X'FE', inclusive, or unless the DBCS character is a
DBCS space (X'4040'). This checking will ensure that each DBCS character is
printable.

In order to print a data set containing DBCS data, the DBCS strings must be
enclosed in shift-out/shift-in characters.

Input and Output
IEBGENER uses the following input:

� An input data set, which contains the data that is to be copied, edited, con-
verted into a partitioned data set or PDSE, or converted into members to be
merged into an existing data set. The input is either a sequential data set or a
member of a partitioned data set or PDSE.

� A control data set, which contains utility control statements. The control data
set is required if editing is to be performed or if the output data set is to be a
partitioned data set or PDSE.

IEBGENER produces the following output:

� An output data set, which can be either sequential or partitioned. The output
data set can be either a new data set (created during the current job step) or
an existing partitioned data set or PDSE that was expanded. If a partitioned
data set or PDSE is created, it is a new member with a new directory entry.
None of the information is copied from the previous directory entry.

� A message data set, which contains informational messages (for example, the
contents of utility control statements) and any error messages.

Message IEC507D will be issued twice when adding data or members to an
existing data set which has an unexpired expiration date. This occurs because the
input and output data sets are opened twice. If IEBGENER is invoked from an
application program, you can dynamically allocate the data sets by issuing SVC 99
before calling IEBGENER.

 IEBGENER (Sequential Copy/Generate Data Set) Program 121

 IEBGENER

Messages issued by this utility are documented in OS/390 MVS System Messages,
Vol 1 (ABA-ASA), OS/390 MVS System Messages, Vol 2 (ASB-EWX), OS/390
MVS System Messages, Vol 3 (GDE-IEB), OS/390 MVS System Messages, Vol 4
(IEC-IFD), OS/390 MVS System Messages, Vol 5 (IGD-IZP).

See Appendix A for IEBGENER return codes.

 Control
You control IEBGENER with job and utility control statements. The job control
statements run IEBGENER and define the data sets that are used and produced by
the program. The utility control statements control the functions of IEBGENER.

Job Control Statements
Figure 48 shows the job control statements for IEBGENER.

Figure 48. Job Control Statements for IEBGENER

Statement Use

JOB Starts the job.

EXEC Specifies the program name (PGM=IEBGENER) or, if the job control
statements reside in a procedure library, the procedure name.

SYSPRINT DD Defines a sequential data set for messages. The data set can be written
to a system output device, a tape volume, or a DASD volume.

SYSUT1 DD Defines the input data set. It can define a sequential data set, a
member of a partitioned data set or PDSE or an HFS file.

SYSUT2 DD Defines the output data set. It can define a sequential data set, a
member of a partitioned data set or PDSE, a partitioned data set or
PDSE or an HFS file.

SYSIN DD Defines the control data set, or specifies DUMMY when the output is
sequential and no editing is specified. The control data set normally
resides in the input stream; however, it can be defined as a member in
a partitioned data set or PDSE.

 EXEC Statement
The EXEC statement is required for each use of IEBGENER.

Using multiple buffers for IEBGENER increases the amount of virtual storage
needed to run the program. You may need to change, or add, the REGION param-
eter for the additional storage to avoid 80A abends.

The default for the number of buffers is five. You can override this by specifying
DCBBUFNO or DCBNCP on the SYSUT1 or SYSUT2 DD statement.

Before you run IEBGENER you may need to calculate the region size (in virtual
storage) needed to run the program, then specify this value in the REGION param-
eter.

You can calculate the region size by using the following formula:

region size = 5ðK + (2 + SYSUT1 BUFNO)\(SYSUT1 BLKSIZE) +
(2 + SYSUT2 BUFNO)\(SYSUT2 BLKSIZE)

122 DFSMS/MVS V1R5 Utilities

 IEBGENER

If you do not use BUFNO in your JCL, use the default value of 5.

The following information, taken from “Example 5: Produce Blocked Copy on Tape
from Unblocked Disk File” on page 135, shows how to calculate the region size
needed:

 SYSUT1 BUFNO = 2ð
 SYSUT1 BLKSIZE = 2K
 SYSUT2 BUFNO = Not specified, default is used
 SYSUT2 BLKSIZE = 32K

 region size = 5ðK + (2 + 2ð)\(2K) + (2 + 5)\(32K)

 Therefore, region size = 318K (that is, REGION=318K).

SYSPRINT DD Statement
The SYSPRINT DD statement is required for each use of IEBGENER. The block
size for the SYSPRINT data set must be a multiple of 121. Any blocking factor can
be specified for this record size.

SYSUT1 DD Statement
The input data set for IEBGENER, as specified in SYSUT1, can contain fixed, vari-
able, undefined, or variable spanned records. You cannot use concatenated data
sets with unlike attributes except for block size or device type as input to
IEBGENER. The rules for concatenating data sets on SYSUT1 are the same as
those for BSAM unless you are concatenating data sets on DASD and tapes. Then
the concatenating rules are the same as for QSAM. For information on concat-
enated data sets for BSAM and QSAM, see DFSMS/MVS Using Data Sets.

| If the SYSUT1 data set is in the system input stream and contains JCL statements,
| code SYSUT1 DD DATA and not SYSUT1 DD *.

Block size for the input data set must be available in the data set label (DSCB), or
tape label, or the DD statement.

The default record format is undefined (U) for the input data set. Record format
must be specified if the data set is new, undefined, or a dummy data set.

The input logical record length must be specified when the record format is fixed
blocked, variable spanned, or variable blocked spanned, or when the data set is
new, or a dummy data set. In all other cases, a default logical record length of 80 is
used.

A partitioned data set or PDSE cannot be produced if an input data set contains
spanned records.

If both the SYSUT1 and the SYSUT2 DD statements specify standard user labels
(SUL), IEBGENER copies user labels from SYSUT1 to SYSUT2. See “Processing
User Labels” on page 394, for a discussion of the available options for user label
processing.

 IEBGENER (Sequential Copy/Generate Data Set) Program 123

 IEBGENER

SYSUT2 DD Statement
The output data set for IEBGENER, as specified in SYSUT2, can contain fixed,
variable, undefined, or variable spanned records (except partitioned data sets or
PDSEs, which cannot contain variable spanned records). These records can be
reblocked by the specification of a new maximum block length on the SYSUT2 DD
statement. If you are reblocking fixed-length or variable-length records, keys can be
retained only if you supply an exit routine to retain them. You cannot retain keys
when you reblock variable spanned records.

If the output data set is on a card punch or a printer, you must specify DCB infor-
mation on the SYSUT2 DD statement.

| When the data set is on DASD or tape and record format and logical record length
| are not specified in the JCL for the output data set, and the data class does not
| supply them, values for each are copied from the input data set.

Note: If you are using IEBGENER with an SMF dump data set, IEBGENER can
| truncate your data. The SMF dump program, IFASMFDP, creates a data set

with a logical record length larger than IEBGENER allows. Thus,
IEBGENER will truncate the data set to a logical record length of 32760,
resulting in a loss of 7 bytes. If you do not have actual data in those 7
bytes, you will lose nothing in the truncation. However, care should be taken
in using IEBGENER with the SMF dump program.

The output block size need not be specified, if logical record length and record
format are specified or available for the input data set. If logical record length and
record format, but not block size, are specified for the SYSUT2 data set, the
system will give the data set an optimal block size.

The output logical record length must be specified when editing is to be performed
and the record format is fixed blocked, variable spanned or variable blocked
spanned. Logical record length must also be specified when the data set is new, or
a dummy data set, or a printer.

A partitioned data set or PDSE cannot be produced if an input or output data set
contains spanned records.

SYSIN DD Statement
The SYSIN DD statement is required for each use of IEBGENER. The block size
for the SYSIN data set must be a multiple of 80. Any blocking factor can be speci-

| fied for this block size. If SYSIN is dummy, IEBGENER copies the input data set
| sequentually.

Utility Control Statements
IEBGENER is controlled by utility control statements. The statements and the order
in which they must appear are listed in Figure 49 on page 125.

The control statements are included in the control data set as required. If no utility
control statements are included in the control data set, the entire input data set is
copied sequentially.

When the output is to be sequential and editing is to be performed, one GEN-
ERATE statement and as many RECORD statements as required are used. If you
are providing exit routines, an EXITS statement is required.

124 DFSMS/MVS V1R5 Utilities

 IEBGENER

When the output is to be partitioned, one GENERATE statement, one MEMBER
statement per output member, and RECORD statements, as required, are used. If
you are providing exit routines, an EXITS statement is required.

A continuation line must start in columns 4 to 16, and a nonblank continuation line
in column 72 is optional.

Figure 49. IEBGENER Utility Control Statements

Statement Use

GENERATE Indicates the number of member names and alias names, record identi-
fiers, literals, and editing information contained in the control data set.

EXITS Indicates that user routines are provided.

LABELS Specifies user-label processing.

MEMBER Specifies the member name and alias of a member of a partitioned data
set or PDSE to be created.

RECORD Defines a record group to be processed and supplies editing informa-
tion.

 GENERATE Statement
The GENERATE statement is required when: output is to be partitioned; editing is
to be performed; or user routines are provided or label processing is specified. The
GENERATE statement must appear before any other IEBGENER utility statements.
If it contains errors or is inconsistent with other statements, IEBGENER is ended.

The syntax of the GENERATE statement is:

where:

MAXNAME=n
specifies a number, from 1 to 3276, that is greater than or equal to the total
number of member names and aliases appearing in subsequent MEMBER
statements. MAXNAME is required if there are one or more MEMBER state-
ments.

MAXFLDS=n
specifies a number, from 1 to 4095, that is greater than or equal to the total
number of FIELD parameters appearing in subsequent RECORD statements.
MAXFLDS is required if there are any FIELD parameters in subsequent
RECORD statements.

MAXGPS=n
specifies a number, from 1 to 2520, that is greater than or equal to the total
number of IDENT or IDENTG parameters appearing in subsequent RECORD
statements. MAXGPS is required if there are any IDENT or IDENTG parame-
ters in subsequent RECORD statements.

[label] GENERATE [,MAXNAME= n]
[,MAXFLDS= n]
[,MAXGPS=n]
[,MAXLITS= n]
[,DBCS={YES|NO }]

 IEBGENER (Sequential Copy/Generate Data Set) Program 125

 IEBGENER

MAXLITS=n
specifies a number, from 1 to 2730, that is greater than or equal to the total
number of characters contained in the FIELD literals of subsequent RECORD
statements. Any DBCS characters used as literals on FIELD parameters count
as two characters each.

MAXLITS is required if the FIELD parameters of subsequent RECORD state-
ments contain literals. MAXLITS does not apply to literals used in IDENT or
IDENTG parameters.

DBCS={YES|NO}
specifies if the input data set contains double-byte character set data.

 EXITS Statement
The EXITS statement is used to identify exit routines you want IEBGENER to use.
For a complete discussion of exit routines, see Appendix C, “Specifying User Exits
with Utility Programs” on page 389.

For a detailed discussion of the processing of user labels as data set descriptors,
and for a discussion of user label totaling, refer to “Processing User Labels” on
page 394.

The syntax of the EXITS statement is:

where:

INHDR=routinename
specifies the name of the routine that processes user input header labels.

OUTHDR=routinename
specifies the name of the routine that creates user output header labels.
OUTHDR is ignored if the output data set is partitioned.

INTLR=routinename
specifies the name of the routine that processes user input trailer labels.

OUTTLR=routinename
specifies the name of the routine that processes user output trailer labels.
OUTTLR is ignored if the output data set is partitioned.

KEY=routinename
specifies the name of the routine that creates the output record key. This
routine does not receive control when a data set consisting of variable spanned
(VS) or variable blocked spanned (VBS) type records is processed because no
processing of keys is permitted for this type of data.

[label] EXITS [INHDR=routinename]
[,OUTHDR=routinename]
[,INTLR= routinename]
[,OUTTLR= routinename]
[,KEY= routinename]
[,DATA= routinename]
[,IOERROR=routinename]
[,TOTAL=(routinename,size)]

126 DFSMS/MVS V1R5 Utilities

 IEBGENER

DATA= routinename
specifies the name of the routine that modifies the physical record (logical
record for variable blocked type records) before it is processed by IEBGENER.

IOERROR=routinename
specifies the name of the routine that handles permanent input/output error
conditions.

TOTAL=(routinename,size)
specifies that a user exit routine is to be provided before writing each record.
The keyword OPTCD=T must be specified for the SYSUT2 DD statement.
TOTAL is valid only when IEBGENER is used to process sequential data sets.
These values must be coded:

routinename
specifies the name of your totaling routine.

size
specifies the number of bytes needed to contain totals, counters, pointers,
and so forth. Size should be coded as a whole decimal number.

 LABELS Statement
The LABELS statement specifies if user labels are to be treated as data by
IEBGENER. For a detailed discussion of this option, refer to “Processing User
Labels” on page 394.

The LABELS statement is used when you want to specify that: no user labels are
to be copied to the output data set; user labels are to be copied to the output data
set from records in the data portion of the SYSIN data set; or user labels are to be
copied to the output data set after they are modified by the user's label processing
routines. If more than one valid LABELS statement is included, all but the last
LABELS statement are ignored.

The syntax of the LABELS statement is:

where:

DATA={YES |NO|ALL|ONLY|INPUT}
specifies if user labels are to be treated as data by IEBGENER. These values
can be coded:

YES
specifies that any user labels that are not rejected by a label processing
routine you have specified on the EXITS statement are to be treated as
data. Processing of labels as data ends in compliance with standard return
codes. YES is the default.

NO
specifies that user labels are not to be treated as data. In order to make
standard user label (SUL) exits inactive, NO must be specified when proc-
essing input/output data sets with nonstandard labels (NSL).

ALL
specifies that all user labels in the group currently being processed are to
be treated as data. A return code of 16 causes IEBGENER to complete

[label] LABELS [DATA={YES |NO|ALL|ONLY|INPUT}]

 IEBGENER (Sequential Copy/Generate Data Set) Program 127

 IEBGENER

processing the remainder of the group of user labels and to stop the job
step.

ONLY
specifies that only user header labels are to be treated as data. User
header labels are processed as data regardless of any return code. The job
ends upon return from the OPEN routine.

INPUT
specifies that user labels for the output data set are supplied as 80-byte
input records in the data portion of SYSIN. The number of input records
that should be treated as user labels must be identified by a RECORD
statement.

LABELS DATA=NO must be specified to make standard user labels (SUL) exits
inactive when input/output data sets with nonstandard labels (NSL) are to be proc-
essed.

 MEMBER Statement
The MEMBER statement is used when the output data set is to be partitioned.
One MEMBER statement must be included for each member to be created by
IEBGENER. The MEMBER statement provides the name and alias names of a new
member.

All RECORD statements following a MEMBER statement refer to the one named in
that MEMBER statement. If no MEMBER statements are included, the output data
set is organized sequentially.

The syntax of the MEMBER statement is:

where:

NAME=(name[,alias][,...])
specifies a member name followed by a list of its aliases. If no aliases are
specified in the statement, the member name need not be enclosed in paren-
theses.

[label] MEMBER NAME=(name[,alias 1][,alias 2][,...])

 RECORD Statement
The RECORD statement is used to define a record group and to supply editing
information. A record group consists of records that are to be processed identically.

The RECORD statement is used when: the output is to be partitioned; editing is to
be performed; or user labels for the output data set are to be created from records
in the data portion of the SYSIN data set. The RECORD statement defines a record
group by identifying the last record of the group with a literal name.

If no RECORD statement is used, the entire input data set or member is processed
without editing. More than one RECORD statement may appear in the control state-
ment stream for IEBGENER.

Within a RECORD statement, one IDENT or IDENTG parameter can be used to
define the record group; one or more FIELD parameters can be used to supply the
editing information applicable to the record group; and one LABELS parameter can

128 DFSMS/MVS V1R5 Utilities

 IEBGENER

be used to indicate that this statement is followed immediately by output label
records.

If both output header labels and output trailer labels are to be contained in the
SYSIN data set, you must include one RECORD statement (including the LABELS
parameter), indicating the number of input records to be treated as user header
labels and another RECORD statement (also including the LABELS parameter) for
user trailer labels. The first such RECORD statement indicates the number of user
header labels; the second indicates the number of user trailer labels. If only output
trailer labels are included in the SYSIN data set, a RECORD statement must be
included to indicate that there are no output header labels in the SYSIN data set
(LABELS=0). This statement must precede the RECORD LABELS=n statement
which signals the start of trailer label input records.

For a further discussion of the LABELS option, refer to “Processing User Labels” on
page 394.

The syntax of the RECORD statement is:

where:

{IDENT|IDENTG}=(length,'name',input-location)
identifies the last record of a collection of records in the input data set. You use
this parameter to identify the last record to be edited according to the FIELD
parameters on the same RECORD statement. If you are creating a partitioned
data set or PDSE, this parameter will identify the last record to be included in
the partitioned data set or PDSE member named in the previous MEMBER
statement. If the RECORD statement is not followed by additional RECORD or
MEMBER statements, IDENT or IDENTG also defines the last record to be
processed.

IDENT is used to identify a standard, single-byte character string. IDENTG is
used to identify a double-byte character string.

The values for IDENT or IDENTG can be coded:

length
specifies the length (in bytes) of the identifying name. The length of your
identifier cannot be greater than eight.

For IDENTG, the length must be an even number.

'name'
specifies the literal that identifies the last input record of a group of records.
'Name' must be coded within single apostrophes.

If you are using IDENTG, 'name' must be a double-byte character string.
The DBCS string must be enclosed in shift-out/shift-in (SO/SI) characters.
The SO/SI characters will not be considered part of the literal specified by
'name', and they should not be included in the count for length.
IEBGENER will disregard the SO/SI characters when it looks for a match
for 'name'.

[label] RECORD [{IDENT|IDENTG}=(length,'name',input-location)]
[,FIELD=([length],[{ input-location|'literal'}],
 [conversion],[output-location])][,FIELD=...]
[,LABELS= n]

 IEBGENER (Sequential Copy/Generate Data Set) Program 129

 IEBGENER

'Name' can be specified in hexadecimal. To do so, code 'name' as name
. Thus, if you do not have a keyboard that can produce certain characters,
you can specify them in their hexadecimal versions. The values of the
SO/SI characters are X'0E' and X'0F', respectively.

If no match for 'name' is found, the remainder of the input data is consid-
ered to be in one record group; subsequent RECORD and MEMBER state-
ments will be ignored.

input-location
specifies the starting position of the field that contains the identifying name
in the input records. Input-location should be coded as a whole decimal
number.

If you do not specify IDENT or IDENTG, all of the input data is considered to
be in one record group. Only the first RECORD and MEMBER statements will
be used by IEBGENER.

FIELD=([length],[{ input-location|'literal'}],[conversion],[output-location])
specifies field-processing and editing information. Only the contents of specified
fields in the input record are copied to the output record; that is, any field in the
output record that is not specified will contain meaningless data.

Note that the variables on the FIELD parameter are positional; if any of the
options are not coded, the associated comma preceding that variable must be
coded.

The values that can be coded are:

length
specifies the length (in bytes) of the input field or literal to be processed. If
length is not specified, a length of 80 is assumed. If a literal is to be proc-
essed, a length of 40 or less must be specified.

input-location
specifies the starting position of the field to be processed. Input-location
should be coded as a whole decimal number. If input-location is not speci-
fied, it defaults to 1.

'literal'
specifies a literal (maximum length of 40 bytes) to be placed in the speci-
fied output location. If a literal contains apostrophes, each apostrophe must
be written as two consecutive apostrophes.

You can specify a literal in hexadecimal by coding X'literal' You can also
specify a double-byte character set string as the literal.

conversion
specifies a code that indicates the type of conversion to be performed on
this field. If no conversion is specified, the field is moved to the output area
without change. The values that can be coded are:

CG
specifies that shift-out/shift-in characters are to be removed, but that
DBCS data is not to be validated. DBCS=YES must be specified on the
GENERATE statement.

130 DFSMS/MVS V1R5 Utilities

 IEBGENER

CV
specifies that DBCS data is to be validated, and that the input records
contain single-byte character set data as well as double-byte.
DBCS=YES must be specified on the GENERATE statement.

GC
specifies that shift-out/shift-in characters are to be inserted to enclose
the DBCS data. DBCS=YES must be specified on the GENERATE
statement.

GV
specifies that DBCS data is to be validated, and that the DBCS data is
not enclosed by shift-out/shift-in characters. DBCS=YES must be speci-
fied on the GENERATE statement.

HE
specifies that H-set BCDIC data is to be converted to EBCDIC.

PZ specifies that packed decimal data is to be converted to unpacked
decimal data. Unpacking of the low-order digit and sign may result in
an alphabetic character. You cannot unpack packed decimal data con-
tained in records longer than 16K bytes.

VC
specifies that DBCS data is to be validated, and that shift-out/shift-in
characters are to be inserted to enclose the DBCS data. DBCS=YES
must be specified on the GENERATE statement.

VG
specifies that DBCS data is to be validated, and that shift-out/shift-in
characters are to be eliminated from the records. DBCS=YES must be
specified on the GENERATE statement.

ZP specifies that unpacked decimal data is to be converted to packed
decimal data.

When the ZP parameter is specified, the conversion is performed in
place. The original unpacked field is replaced by the new packed field;
therefore, the ZP parameter must be omitted from subsequent refer-
ences to that field. If the field is needed in its original unpacked form, it
must be referenced before the use of the ZP parameter.

If conversion is specified in the FIELD parameter, the length of the output
record can be calculated for each conversion specification. When L is equal
to the length of the input record, the calculation is made as follows:

� For a PZ (packed-to-unpacked) specification, 2L-1.

� For a ZP (unpacked-to-packed) specification, (L/2) + C. If L is an odd
number, C is 1/2; if L is an even number, C is 1.

� For an HE (H-set BCDIC to EBCDIC) specification, L.

� For the DBCS conversion codes, the shift-out/shift-in characters
account for one byte each. If you add or delete them, you will have to
account for the additional bytes.

output-location
specifies the starting location of this field in the output records. Output-
location should be coded as a whole decimal number.

 IEBGENER (Sequential Copy/Generate Data Set) Program 131

 IEBGENER

If output-location is not specified, the location defaults to 1.

LABELS= n
is an optional parameter that indicates the number of records in the SYSIN
data set to be treated as user labels. The number n, which is a number from 0
to 8, must specify the exact number of label records that follow the RECORD
statement. If this parameter is included, DATA=INPUT must be coded on a
LABELS statement before it in the input stream.

 IEBGENER Examples
The examples that follow illustrate some of the uses of IEBGENER. Figure 50 can
be used as a quick-reference guide to IEBGENER examples. The numbers in the
“Example” column refer to the examples that follow.

Figure 50. IEBGENER Example Directory

Operation
Data Set Organiza-
tion Device Comments Example

PRINT Sequential Disk and
Printer

Data set is listed on a printer. 1

CONVERT Sequential to Parti-
tioned

Tape and
Disk

Blocked output. Three members are
to be created.

2

MERGE Sequential into Par-
titioned

Disk Blocked output. Two members are to
be merged into existing data set.

3

COPY Sequential In-stream
and Tape

Blocked output. 4

Copy and
reblock

Sequential Disk and
Tape

Makes blocked tape copy from disk;
explicit buffer request.

5

COPY–with
editing

Sequential Tape Blocked output. Data set edited as
one record group.

6

COPY–with
editing

Sequential HFS file to
Disk

Blocked output. New record length
specified for output data set. Two
record groups specified.

7

COPY–with
DBCS validation

Sequential Disk DBCS data is validated and edited
before copying.

8

Examples that use disk or tape in place of actual device numbers must be
changed before use. The actual device numbers depend on how your installation
has defined the devices to your system.

Example 1: Print a Sequential Data Set
In this example, a sequential data set is printed. The printed output is left-aligned,
with one 80-byte record appearing on each line of printed output.

 //PRINT JOB ...
 //STEP1 EXEC PGM=IEBGENER
 //SYSPRINT DD SYSOUT=A
 //SYSIN DD DUMMY
 //SYSUT1 DD DSNAME=D8ð.DATA,DISP=SHR
 //SYSUT2 DD SYSOUT=A

The job control statements are discussed below:

132 DFSMS/MVS V1R5 Utilities

 IEBGENER

� SYSIN DD defines a dummy data set. Since no editing is performed, no utility
control statements are required.

� SYSUT1 DD defines the input sequential data set.

� SYSUT2 DD indicates that the output is to be written on the system output
device (printer). IEBGENER copies LRECL and RECFM from the SYSUT1 data
set and the system determines a BLKSIZE.

Example 2: Create a Partitioned Data Set from Sequential Input
In this example, a partitioned data set (consisting of three members) is created
from sequential input.

 //TAPEDISK JOB ...
 //STEP1 EXEC PGM=IEBGENER
 //SYSPRINT DD SYSOUT=A
 //SYSUT1 DD DSNAME=INSET,UNIT=tape,LABEL=(,SL),
 // DISP=(OLD,KEEP),VOLUME=SER=ðð1234
 //SYSUT2 DD DSNAME=NEWSET,UNIT=disk,DISP=(,KEEP),
 // VOLUME=SER=111112,SPACE=(TRK,(1ð,5,5)),
 // DCB=(RECFM=FB,LRECL=8ð,BLKSIZE=2ððð)
 //SYSIN DD \
 GENERATE MAXNAME=3,MAXGPS=2
 MEMBER NAME=MEMBER1
 GROUP1 RECORD IDENT=(8,'FIRSTMEM',1)
 MEMBER NAME=MEMBER2
 GROUP2 RECORD IDENT=(8,'SECNDMEM',1)
 MEMBER NAME=MEMBER3
 /\

The control statements are discussed below:

� SYSUT1 DD defines the input data set (INSET). The data set is the first data
set on a tape volume.

� SYSUT2 DD defines the output partitioned data set (NEWSET). The data set is
to be placed on a disk volume. Ten tracks of primary space, five tracks of sec-
ondary space, and five blocks (256 bytes each) of directory space are allocated
to allow for future expansion of the data set. The output records are blocked to
reduce the space required by the data set.

� SYSIN DD defines the control data set, which follows in the input stream. The
utility control statements are used to create members from sequential input
data; the statements do not specify any editing.

� GENERATE indicates that three member names are included in subsequent
MEMBER statements and that the IDENT parameter appears twice in subse-
quent RECORD statements.

� The first MEMBER statement assigns a member name (MEMBER1) to the first
member.

� The first RECORD statement (GROUP1) identifies the last record to be placed
in the first member. The name of this record (FIRSTMEM) appears in the first
eight positions of the input record.

� The remaining MEMBER and RECORD statements define the second and third
members. Note that, as there is no RECORD statement associated with the
third MEMBER statement, the remainder of the input file will be loaded as the
third member.

 IEBGENER (Sequential Copy/Generate Data Set) Program 133

 IEBGENER

Example 3: Convert Sequential Input into Partitioned Members
In this example, sequential input is converted into two partitioned members. The
newly created members are merged into an existing partitioned data set. User
labels on the input data set are passed to the user exit routine.

 //DISKTODK JOB ...
 //STEP1 EXEC PGM=IEBGENER
 //SYSPRINT DD SYSOUT=A
 //SYSUT1 DD DSNAME=INSET,UNIT=disk,DISP=(OLD,KEEP),
 // VOLUME=SER=111112,LABEL=(,SUL)
 //SYSUT2 DD DSNAME=EXISTSET,UNIT=disk,DISP=(MOD,KEEP),
 // VOLUME=SER=111113
 GENERATE MAXNAME=3,MAXGPS=1
 EXITS INHDR=ROUT1,INTLR=ROUT2
 MEMBER NAME=(MEMX,ALIASX)
 GROUP1 RECORD IDENT=(8,'FIRSTMEM',1)
 MEMBER NAME=MEMY

The control statements are discussed below:

� SYSUT1 DD defines the input data set (INSET). The input data set, which
resides on a disk volume, has standard user labels.

� SYSUT2 DD defines the output partitioned data set (EXISTSET). The members
created during this job step are merged into the partitioned data set.

| � The SYSIN DD statement is omitted. Because the GENERATE line does not
| begin with //, the system assumes it is preceded by a //SYSIN DD * line.SYSIN

DD defines the control data set, which follows in the input stream. The utility
control statements are used to create members from sequential input data; the

| statements do not specify any editing.A /* at the end of any DD * data set is
| unnecessary because a JCL satement or end of the job stream marks the end
| of the input stream data set.

� GENERATE indicates that a maximum of three names and aliases are included
in subsequent MEMBER statements and that one IDENT parameter appears in
a subsequent RECORD statement.

� EXITS defines the user routines that are to process user labels.

� The first MEMBER statement assigns a member name (MEMX) and an alias
(ALIASX) to the first member.

� The RECORD statement identifies the last record to be placed in the first
member. The name of this record (FIRSTMEM) appears in the first eight posi-
tions of the input record.

� The second MEMBER statement assigns a member name (MEMY) to the
second member. The remainder of the input data set is included in this
member.

Example 4: In-stream Input, Sequential Data Set to Tape Volume
In this example, an in-stream input, sequential data set is copied to a tape volume.

134 DFSMS/MVS V1R5 Utilities

 IEBGENER

 //CDTOTAPE JOB ...
 //STEP1 EXEC PGM=IEBGENER
 //SYSPRINT DD SYSOUT=A
 //SYSIN DD DUMMY
 //SYSUT2 DD DSNAME=OUTSET,UNIT=tape,LABEL=(,SL),
 // DISP=(,KEEP),VOLUME=SER=ðð1234,
 // DCB=(RECFM=FB,LRECL=8ð,BLKSIZE=2ððð)
 //SYSUT1 DD \
 (in-stream data)
 /\

The job control statements are discussed below:

� SYSIN DD defines a dummy data set. No editing is performed; therefore, no
utility control statements are needed.

� SYSUT2 DD defines the output data set, OUTSET. The data set is written to a
tape volume with IBM standard labels. The data set is to reside as the first (or
only) data set on the volume.

� SYSUT1 DD defines the in-stream data which is actually a JES SYSIN data
set. The data set contains no statements.

Example 5: Produce Blocked Copy on Tape from Unblocked Disk File
In this example, a blocked copy on tape is made from an unblocked sequential disk
file. Because the disk data set has a relatively small block size, the number of
buffers explicitly requested is larger than the default of five. This improves perform-
ance by permitting more overlap of reading the SYSUT1 data set with writing the
SYSUT2 data set.

 //COPYJOB JOB
 //STEP1 EXEC PGM=IEBGENER,REGION=318K
 //SYSPRINT DD SYSOUT=A
 //SYSIN DD DUMMY
 //SYSUT1 DD DSNAME=INPUT,UNIT=disk,
 // DISP=OLD,VOL=SER=X1338ð,
 // DCB=(BUFNO=2ð,RECFM=F,LRECL=2ððð,BLKSIZE=2ððð)
 //SYSUT2 DD DSNAME=OUTPUT,UNIT=tape,DISP=(NEW,KEEP),
 // DCB=(RECFM=FB,LRECL=2ððð,BLKSIZE=32ððð)

The job control statements are discussed below:

� The EXEC statement names the IEBGENER program and specifies the virtual
storage region size required. (Calculation of region size is described in
Figure 26 on page 85.)

� The SYSIN DD statement is a dummy, since no editing is to be performed.

� The SYSUT1 DD statement identifies an input disk file. Normally, the DCB
RECFM, LRECL, and BLKSIZE information should not be specified in the DD
statement for an existing disk file because the information exists in the data set
label in the VTOC; it is specified in this example to illustrate the contrast with
the output data set. The unit and volume serial information could be omitted if
the data set were cataloged. The DCB information specifies BUFNO=20 to
allow up to twenty blocks to be read with each rotation of the disk, assuming
the disk track will hold that many blocks.

 IEBGENER (Sequential Copy/Generate Data Set) Program 135

 IEBGENER

� The SYSUT2 DD statement identifies the output tape data set and specifies a
block size of 32,000 bytes. The default of five buffers should be enough to
keep pace with the input.

Example 6: Edit and Copy a Sequential Input Data Set with Labels
In this example, a sequential input data set is edited and copied.

 //TAPETAPE JOB ...
 //STEP1 EXEC PGM=IEBGENER
 //SYSPRINT DD SYSOUT=A
 //SYSUT1 DD DSNAME=OLDSET,UNIT=tape,DISP=(OLD,KEEP),
 // VOLUME=SER=ðð1234,LABEL=(3,SL)
 //SYSUT2 DD DSNAME=NEWSET,UNIT=tape,DISP=(NEW,PASS),
 // DCB=(RECFM=FB,LRECL=8ð,BLKSIZE=2ððð),
 // VOLUME=SER=ðð1235,LABEL=(,SL)
 //SYSIN DD \
 GENERATE MAXFLDS=3,MAXLITS=11
 RECORD FIELD=(1ð,'\\\\\\\\\\',,1),
 FIELD=(5,1,HE,11),FIELD=(1,'=',,16)
 EXITS INHDR=ROUT1,OUTTLR=ROUT2
 LABELS DATA=INPUT
 RECORD LABELS=2

(first header label record)
(second header label record)

 RECORD LABELS=2

(first trailer label record)
(second trailer label record)

 /\

The control statements are discussed below:

� SYSUT1 DD defines the sequential input data set (OLDSET). The data set was
originally written as the third data set on a tape volume.

� SYSUT2 DD defines the sequential output data set (NEWSET). The data set is
written as the first data set on a tape volume. The output records are blocked
to reduce the space required by the data set and to reduce the access time
required when the data set is subsequently referred to. The data set is passed
to a subsequent job step.

� SYSIN DD defines the control data set, which follows in the input stream.

� GENERATE indicates that a maximum of three FIELD parameters is included in
subsequent RECORD statements and that a maximum of 11 literal characters
are included in subsequent FIELD parameters.

� The first RECORD statement controls the editing, as follows: asterisks are
placed in positions 1 through 10; positions 1 through 5 of the input record are
converted from H-set BCDIC to EBCDIC mode and moved to positions 11
through 15; and an equal sign is placed in position 16.

� EXITS indicates that the specified user routines require control when SYSUT1
is opened and when SYSUT2 is closed.

� LABELS indicates that labels are included in the input stream.

136 DFSMS/MVS V1R5 Utilities

 IEBGENER

� The second RECORD statement indicates that the next two records from
SYSIN should be written out as user header labels on SYSUT2.

� The third RECORD statement indicates that the next two records from SYSIN
should be written as user trailer labels on SYSUT2.

This example shows the relationship between the RECORD LABELS statement, the
LABELS statement, and the EXITS statement. IEBGENER tries to write a first and
second label trailer as user labels at close time of SYSUT2 before returning control
to the system; the user routine, ROUT2, can review these records and change
them, if necessary.

Example 7: Edit and Copy a Sequential Input Data Set
| In this example,an HFS (POSIX) file is edited and copied. The logical record length
| of the output data set is less than that of the input data set.

| //DISKDISK JOB ...
| //STEP1 EXEC PGM=IEBGENER
| //SYSPRINT DD SYSOUT=A
| //SYSUT1 DD PATH='/dist3/stor44.mon',DATATYPE=TEXT,
| // LRECL=1ðð,BLKSIZE=1ððð,RECFM=FB
| //SYSUT2 DD DSNAME=NEWSET,UNIT=disk,DISP=(NEW,KEEP),
| // VOLUME=SER=111113,DCB=(RECFM=FB,LRECL=8ð,
| // BLKSIZE=64ð),SPACE=(TRK,(2ð,1ð))
| //SYSIN DD \
| GENERATE MAXFLDS=4,MAXGPS=1
| EXITS IOERROR=ERRORRT
| GRP1 RECORD IDENT=(8,'FIRSTGRP',1),FIELD=(21,8ð,,6ð),FIELD=(59,1,,1)
| GRP2 RECORD FIELD=(11,9ð,,7ð),FIELD=(69,1,,1)
| /\

The control statements are discussed below:

| � SYSUT1 DD defines the input file. Its name is /dist3/stor44/sales.mon. It con-
| tains text in 100–byte records. The record delimiter is not stated here. The file
| might be on a non-OS/390, non-System/390 system that is available via HFS,
| Network File System.

� SYSUT2 DD defines the output data set (NEWSET). Twenty tracks of primary
storage space and ten tracks of secondary storage space are allocated for the
data set on a disk volume. The logical record length of the output records is 80
bytes, and the output is blocked.

� SYSIN DD defines the control data set, which follows in the input stream.

� GENERATE indicates that a maximum of four FIELD parameters are included
in subsequent RECORD statements and that one IDENT parameter appears in
a subsequent RECORD statement.

� EXITS identifies the user routine that handles input/output errors.

Figure 51 on page 138 shows how a sequential input data set is edited and
copied.

 IEBGENER (Sequential Copy/Generate Data Set) Program 137

 IEBGENER

FIRSTGRP
SYSUT1
Input
Record

End of
File

Output Record Output Record

Group 1 Group 2

First
Record

First
Record

Last
Record

Last
Record

Marker
1 2 3 4 2 31

SYSUT2
Output
Record

59 60-80 Positions 1-69 70-80

Ignored

Positions
1-69 70-8960-79 80-100

Ignored

Positions 1-8

Ignored

Positions 1-59

Positions
1-59 90-100

Figure 51. How a Sequential Data Set is Edited and Copied

� The first RECORD statement (GRP1) controls the editing of the first record
group. FIRSTGRP, which appears in the first eight positions of an input record,
is defined as being the last record in the first group of records. The data in
positions 80 through 100 of each input record are moved into positions 60
through 80 of each corresponding output record. (This example implies that the
data in positions 60 through 79 of the input records in the first record group are
no longer required; thus, the logical record length is shortened by 20 bytes.)
The data in the remaining positions within each input record are transferred
directly to the output records, as specified in the second FIELD parameter.

� The second RECORD statement (GRP2) indicates that the remainder of the
input records are to be processed as the second record group. The data in
positions 90 through 100 of each input record are moved into positions 70
through 80 of the output records. (This example implies that the data in posi-
tions 70 through 89 of the input records from group 2 are no longer required;
thus, the logical record length is shortened by 20 bytes.) The data in the
remaining positions within each input record are transferred directly to the
output records, as specified in the second FIELD parameter.

Example 8: Edit Double-Byte Character Set Data
In this example, an edited data set containing double-byte character set data is
created. Shift-out/shift-in characters (< and >) are inserted to enclose the DBCS
strings.

138 DFSMS/MVS V1R5 Utilities

 IEBGENER

 //DBLBYTE JOB ...
 //STEP1 EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=A

 //SYSUT1 DD DSN=INPUT,DISP=(OLD,KEEP),UNIT=disk
 //SYSUT2 DD DSN=OUTPUT,UNIT=disk,DISP=(NEW,CATLG),
 // DCB=(LRECL=8ð,BLKSIZE=32ðð,RECFM=FB),SPACE=(TRK,(1,1))
 //SYSIN DD \
 GENERATE MAXFLDS=4,MAXLITS=9,DBCS=YES
 RECORD FIELD=(2ð,1,,1),FIELD=(16,33,VC,21),
 FIELD=(3ð,5ð,VC,39),FIELD=(9,'\\\\\\\\\',,72)
 /\

The control statements are discussed below.

� SYSUT1 DD defines the input data set, INPUT, which resides on a disk
volume.

� SYSUT2 DD defines the output data set, OUTPUT, which will reside on a disk
volume.

� SYSIN DD defines the control data set, which follows in the input stream.

� GENERATE indicates that a maximum of four FIELD parameters and nine
literal characters will appear on subsequent RECORD statements, and that the
input data set contains DBCS data.

� RECORD specifies how input records will be edited before being placed in the
output data set. The first FIELD parameter indicates that the first 20 positions
(bytes) of the input records are to be placed in the first 20 positions of the
output records.

� The second FIELD parameter indicates that data in positions 33 through 48 are
to be checked to ensure that they are valid DBCS data, and that
shift-out/shift-in characters are to be inserted around this field. For DBCS data
to be valid, each byte of the 2-byte characters must have a hexadecimal value
between X'41' and X'FE', or the 2-byte character must be a DBCS space
(X'4040'). Once the checking and inserting are completed, this field is to be
copied to the output records beginning at position 21.

� The third FIELD parameter operates on the 30-byte field beginning at position
50 in the input records. This field is checked for valid DBCS data, and shift-
out/shift-in characters are inserted around the field. The resulting field is copied
to the output records beginning at position 39.

Notice that in specifying the output locations in the FIELD parameter, you have to
account for the additional positions that the SO/SI characters will use. For instance,
the eight-character (16-byte) DBCS string beginning at position 21 does not end at
position 36, but at 38. The SO/SI characters are single-byte characters, so the pair
will take up two positions.

The final FIELD parameter clears out the final positions of the output records with
asterisks.

 IEBGENER (Sequential Copy/Generate Data Set) Program 139

 IEBGENER

140 DFSMS/MVS V1R5 Utilities

 IEBIMAGE

IEBIMAGE (Create Printer Image) Program

IEBIMAGE is a data set utility that creates and maintains the following types of IBM
3800 Printing Subsystem and IBM 4248 printer modules and stores them in a
library:

� Forms control buffer modules for the 3800 and 4248 that specify controls for
the vertical line spacing and any one of 12 channel codes per line.

� Copy modification modules for the 3800 that specify data that is to be printed
on every page for specified copies of the output data set.

� Character arrangement table modules for the 3800 that translate the input data
into printable characters and identify the associated character sets and graphic
character modification modules.

� Graphic character modification modules for the 3800 that contain the scan pat-
terns of characters you design or characters from IBM-supplied modules.

� Library character set modules for the 3800 that contain the scan patterns of
character sets you define or IBM-supplied character sets.

The IEBIMAGE program creates and maintains all modules required for use on the
3800 Model 1 and Model 3 printers. The program default is to build these modules
in the 3800 Model 1 format; however, 3800 Model 3 compatibility can be specified
with IEBIMAGE utility control statements.

You can also use IEBIMAGE to create and maintain FCB modules for the 4248
printer. These modules are compatible with the 3262 Model 5 printer; however, the
3262 Model 5 does not support variable printer speeds or the horizontal copy
feature of the 4248. Unless otherwise stated, where a reference to the 4248 printer
is used in this chapter, the 3262 Model 5 can be substituted.

For information on creating images for other types of printers, see DFSMS/MVS
DFSMSdfp Advanced Services.

Storage Requirements for SYS1.IMAGELIB Data Set
The auxiliary storage requirement in tracks for SYS1.IMAGELIB is:

Number of tracks = (A + B) / T

where:

A is the number of 1403 UCS images, 3211 UCS images, 3211 FCB images,
3525 data protection images, 3890 SCI programs, 3800 FCB modules, 4248
FCB images, 3262 Model 5 FCB images, 3800 character arrangement tables
and 3800 library character sets (including images or modules supplied by you
or IBM).

IBM supplies twelve 1403 UCS images, five 3211 UCS images, four 3211 FCB
images, one 3800 FCB image, one 4245 UCS image table, one 4248 UCS
image table, or eighty-four 3800 character arrangement tables, twenty 3800
Model 1 library character data sets, twenty 3800 Model 3, 6, and 8 library char-
acter sets, and graphic character modification modules.

 Copyright IBM Corp. 1979, 1999 141

 IEBIMAGE

Note: IBM supplies no 4245 or 4248 UCS images in SYS1.IMAGELIB. The
4245 and 4248 printers load their own UCS images into the UCS buffer
at power-on time. IBM does supply 4245 and 4248 FCB images, which
may be used. For more information on printer-supplied UCS or FCB
images, see DFSMS/MVS DFSMSdfp Advanced Services.

B is (V + 600) / 1500 for each 3800 graphic character modification module and
library character set module, each 3800 copy modification module, 4245 UCS
image table, 4248 UCS image table, and each 3890 SCI program that is more
than approximately 600 bytes.

V is the virtual storage requirement in bytes for each module.

The virtual storage requirements for the IBM-supplied 3800 graphic char-
acter modification module containing the World Trade National Use
Graphics are 32420 bytes for Model 1 and 55952 bytes for Model 3, 6,
and 8. The virtual storage requirements for the IBM-supplied 3800 library
character sets for the Model 1 are 4680 bytes and 8064 bytes for the
Model 3, 6, and 8.

T is the approximate number of members per track, depending on type of
volume. Because of the overhead bytes and blocks in a load module, the dif-
ference in space requirements for an 80-byte module and a 400-byte module is
small.

These constants assume an average member of 8 blocks, including a file
mark, with a total data length of 800 bytes. For example, on a 3380 with 523
bytes of block overhead, the assumed average is 4984 bytes. If a different
average member data length and average number of blocks per member are
anticipated, these constants should reflect the actual number of members per
track.

To determine the number of members per track, divide the average member
length, including block overhead, into the track capacity for the device. (Track
capacity for DASD is discussed in DFSMS/MVS Macro Instructions for Data
Sets.)

The result, (A + B) / T, is the track requirement.

The number of directory blocks for SYS1.IMAGELIB is given by the formula:

Number of directory blocks = (A + C + D) / 6

where:

A is the same value as A in the track requirement calculation.

C is the number of modules used to calculate B, when calculating the track
requirement.

D is the number of aliases. The IBM-supplied 1403 UCS images have four
aliases and the IBM-supplied 3211 UCS images have six aliases. If you are not
going to use these aliases, you can scratch them after system generation.

Figure 52. Members per track (T) for various devices

T Device Type

17 3380, all models
20 3390, all models
16 9345, all models

142 DFSMS/MVS V1R5 Utilities

 IEBIMAGE

Maintaining the SYS1.IMAGELIB Data Set
You will normally maintain SYS1.IMAGELIB using several programs in conjunction
with IEBIMAGE. For example, you may find it necessary to rename or delete
modules or to compress or list the entire contents of the data set. Programs such
as PDF, DFDSS, IEBCOPY, IEBPTPCH, IEHLIST, and IEHPROGM should be
used to help maintain SYS1.IMAGELIB. The program AMASPZAP can also be
used for diagnosis purposes, and is described in OS/390 MVS Diagnosis: Tools
and Service Aids.

If you use programs other than IEBIMAGE for maintenance, you must specify the
full module name. The module's full name consists of a 4-character prefix followed
by a 1- to 4-character name that you have assigned to it. It is thus a 5- to
8-character member name in the form:

FCB2xxxx, which identifies an FCB module that may be used with a 3203,
3211, 3262 Model 5, 4248, or 4245 printer. Note that the 4248 accepts FCBs
that will also work with a 3203, 3211, 3262 Model 5, or 4245 printer. Also note
that FCB2 modules cannot be written using IEBIMAGE, although IEBIMAGE
can use FCB2 modules as input for creating FCB4 modules. For information on
maintaining and creating FCB2 modules, see DFSMS/MVS DFSMSdfp
Advanced Services.
FCB3xxxx, which identifies a 3800 FCB module
FCB4xxxx, which identifies an FCB module that may be used with a 4248 or
3262 Model 5 printer
MOD1xxxx, which identifies a 3800 copy modification module
XTB1xxxx, which identifies a 3800 character arrangement table module
GRAFxxxx, which identifies a graphic character modification module for a 3800
Model 1
GRF2xxxx, which identifies a graphic character modification module for a 3800
Model 3
LCS1nn, which identifies a library character set module for a 3800 Model 1
LCS2nn, which identifies a library character set module for a 3800 Model 3

where:

xxxx
is the 1- to 4-character user-assigned name of the module.

nn is the 2-character user-assigned ID of the module.

Alias names are not supported by IEBIMAGE, so you should be careful if you use
them. For example, if you change a module by specifying its alias name, the alias
name becomes the main name of the new module, and the old module is no longer
accessible via the alias but is still accessible via its original main name.

General Module Structure
Each module contains 8 bytes of header information preceding the data. For the
3800 printing subsystem, the general module header is shown in Figure 53 on
page 144.

 IEBIMAGE (Create Printer Image) Program 143

 IEBIMAGE

Figure 53. 3800 General Module Header

Header information for the 4248 printer FCB module is shown, with the module
format, in Figure 55 on page 146.

The SETPRT macro instruction uses the name to:

� Identify the module in the image library.
� Save the name to optimize future requests.

The SETPRT macro instruction uses the length to:

� Obtain sufficient storage for the module.
� Build channel programs to load the data into the printer.

Naming Conventions for Modules
Each module placed in a library by the IEBIMAGE utility has a 4-character system-
assigned prefix as the first part of its name. These prefixes are described on 143.

You can assign a 1- to 4-character identifier (name) to the module you create by
using the NAME control statement in the operation group you use to build the
module. If the module is a library character set, the ID assigned to it must be
exactly 2 characters. Each of those characters must be within the range 0 through
9, and A through F; the second character must represent an odd hexadecimal digit.
However, the combinations X'7F' and X'FF' are not allowed. Except for library
character set modules, this identifier is used in the JCL, the SETPRT macro
instruction, or the character arrangement table to identify the module to be loaded.

While IEBIMAGE refers only to the 1- to 4-character name or the 2-character ID
(the suffix) that is appended to the prefix, the full name must be used when using
other utilities (such as IEBPTPCH or IEHPROGM).

 Using IEBIMAGE

Creating a Forms Control Buffer Module
The forms control buffer (FCB) module is of variable length and contains vertical
line spacing information (6, 8, or 12 lines per inch for the 3800 Model 1; 6 or 8 lines
per inch for the 4248; and 6, 8, 10, or 12 lines per inch for the 3800 Model 3). The
FCB module can also identify one of 12 carriage-control channel codes for each
line. For the 4248 printer, the module also contains information on the horizontal
copy feature and the printer speed.

144 DFSMS/MVS V1R5 Utilities

 IEBIMAGE

The FCB module is created and stored in an image library, using the FCB and
NAME utility control statements. For the 4248 FCB module, the INCLUDE and
OPTION statements can also be coded to indicate that an existing FCB module
(prefix FCB2 or FCB4) is to be used as a model.

For the 3800, IBM supplies one default FCB image in SYS1.IMAGELIB, called
FCB3STD1. For the 4248, although the last FCB image loaded is reloaded by the
printer when the power is turned on, IBM supplies two FCB images that may also
be used by printers other than the 4248. For the 3262 Model 5, a default FCB
image is also supplied.

3800 FCB Module Structure
The FCB data following the header information is a series of 1-byte line control
codes for each physical line of the form. There are 18 to 144 of these bytes,
depending on the length of the form.

Each byte is a bit pattern describing one of 12 channel codes for vertical forms
positioning and one of four lines-per-inch codes for vertical line spacing. The struc-
ture of the 3800 FCB module is shown in Figure 54.

Figure 54. 3800 FCB Module Structure

� The top and bottom 1/2 inch of each page are unprintable, and the bytes corre-
sponding to these positions must be void of any channel codes. Three bytes of
binary zeros are supplied by the IEBIMAGE utility for the top and bottom 1/2
inch.

� The total number of lines defined in the module must be equal to the length of
the form. The printable lines defined must start 1/2 inch below the top and stop
1/2 inch from the bottom of the form.

 IEBIMAGE (Create Printer Image) Program 145

 IEBIMAGE

4248 FCB Module Structure
The FCB data following the header information consists of at least five bytes: a flag
byte (X'7E'), a control byte (containing information about the horizontal copy
feature and printer speed), an offset byte, one or more FCB data bytes (similar to
the 3800 data byte for each physical line of the form), and an end-of-sheet byte
(X'FE'). The syntax of the 4248 FCB module is shown in Figure 55.

Figure 55. 4248 FCB Module Structure

The control byte is a bit pattern describing whether the horizontal copy feature is
active and what printer speed is to be set when the FCB is loaded into the buffer.
The structure of the control byte is shown in Figure 56.

Figure 56. 4248 FCB Module Control Byte

Notes to Figure 56

146 DFSMS/MVS V1R5 Utilities

 IEBIMAGE

ñ IEBIMAGE sets these bits to zero. For more information on the stacker drop
rate and stacker level control bits, see the appropriate hardware manual for
your printer.

ò If the module is used by a 3262 Model 5 printer, these bits are ignored.

The offset byte follows the control byte and is set either to zero or to the print posi-
tion of the horizontal copy (2 through 168).

The data byte is a bit pattern similar to that produced for the 3800 printing sub-
system. Each data byte describes one of 12 channel codes for vertical forms posi-
tioning and one of the allowed lines-per-inch codes for vertical line spacing. The
structure of the data byte is shown in Figure 57.

Figure 57. 4248 FCB Module Data Byte

The total number of lines defined in the module must be equal to the length of the
form.

FCB Module Listing
Figure 58 on page 148 shows the IEBIMAGE listing of a 3800 FCB module. The
notes that follow the figure describe the encircled numbers in the figure.

For the 4248 FCB module, the IEBIMAGE listing also includes the horizontal copy
feature, printer speed setting, and default settings.

 IEBIMAGE (Create Printer Image) Program 147

 IEBIMAGE

Figure 58. IEBIMAGE Listing of a Forms Control Buffer Module

Notes to Figure 58 :

1. The line number. Each line of the form is listed in this way.
2. The vertical spacing of the line, in lines per inch.
3. The channel code, printed for each line that includes a channel code.

148 DFSMS/MVS V1R5 Utilities

 IEBIMAGE

Creating a Copy Modification Module
The 3800 copy modification module contains predefined data for modifying some or
all copies of an output data set. Segments of the module contain predefined text, its
position on each page of the output data set, and the copy or copies the text
applies to.

The copy modification module is created and stored in an image library, using the
INCLUDE, OPTION, COPYMOD, and NAME utility control statements.

The INCLUDE statement identifies a module that is to be copied and used as a
basis for the newly created module. The OPTION statement with the OVERRUN
parameter allows you to suppress the printing of line overrun condition messages
for those vertical line spacings that are not applicable to the job. The OPTION
statement with the DEVICE

parameter specifies 3800 Model 3 compatibility mode processing. The COPYMOD
statement is used to describe the contents of one of the new module's segments.
The NAME statement is used to identify the new module and to indicate whether it
is new or is to replace an existing module with the same name.

COPYMOD Module Structure
The copy modification data following the header information is a series of seg-
ments. Each segment is of variable length and is composed of the components
shown in Figure 59.

Figure 59. Copy Modification Module Structure

A, B, C, D, E, and F are each 1-byte fields.

� If the module contains more than one segment, the starting copy number must
be equal to or greater than the starting copy number in the previous segment.

� Any string of the same character within the text may be compressed into 3
bytes. The first such byte is X'FF', the second byte is the number of com-
pressed characters, and the third byte is the data code for the character.

� The size of the module is limited to 8192 bytes of data and 8 bytes of header
information.

 IEBIMAGE (Create Printer Image) Program 149

 IEBIMAGE

COPYMOD Module Listing
Figure 60 shows the listing of three segments of a copy modification module. This
listing shows only the positioning of the modifying text. To print out the text itself,
you can use the IEBPTPCH utility program or the AMASPZAP service aid. The
numbered notes that follow the figure describe the items marked with the encircled
numbers.

Figure 60. IEBIMAGE Listing of Three Segments of a Copy Modification Module

Notes to Figure 60 :

In this example, each note refers to the module's third segment.

1. The name of the copy modification module as it exists in the SYS1.IMAGELIB
data set's directory (including the 4-byte system-assigned prefix).

2. The segment number of the modification segment.

3. This segment applies only to the second copy of the output data set.

4. The text of the segment is located on lines 34, 35, and 36.

5. The text on each line starts at the 75th character, and occupies 10 character
spaces.

Creating a Character Arrangement Table Module
The 3800 character arrangement table module is fixed length and consists of three
sections:

� System control information, which contains the module's name and length.

� The translation table, which contains 256 one-byte translation table entries, cor-
responding to the 8-bit data codes (X'00' through X'FF'). A translation table
entry can identify one of 64 character positions in any one of four writable char-
acter generation modules (WCGMs) except the last position in the fourth
WCGM (WCGM 3), which would be addressed by X'FF'. The code X'FF' is
reserved to indicate an unprintable character. When an entry of X'FF' is
detected by the printer as a result of attempting to translate an unusable 8-bit
data code, the printer prints a blank and sets the data-check indicator on
(unless the block-data-check option is in effect).

� Identifiers, which identify the character sets and the graphic character modifica-
tion modules associated with the character arrangement table.

150 DFSMS/MVS V1R5 Utilities

 IEBIMAGE

For the 3800 Model 1 or Model 3, if the character set identifier is even, the char-
acter set is accessed from the printer's flexible disk. If the identifier is odd, the char-
acter set is retrieved from the image library.

The character arrangement table is created using the INCLUDE, TABLE, and
NAME utility control statements. The INCLUDE statement identifies an existing
character arrangement table that is to be copied and used as a basis for the new
module. The TABLE statement describes the contents of the new or modified
module. The NAME statement identifies the character arrangement table and indi-
cates whether it is new or is to replace an existing module with the same name.

The OPTION statement with the DEVICE=3800M3 parameter should be specified
when printing an existing character arrangement table for a 3800 Model 3. This is
to ensure that the system assigns the correct prefix to the graphic modification
module name associated with the character arrangement table.

For information on IBM-supplied character arrangement tables and character sets,
see IBM 3800 Printing Subsystem Programmer’s Guide.

Note: The character arrangement table you select mightnot include all the charac-
ters in a character set. The character arrangement table corresponds to a
print train, which is sometimes a subset of one or more complete character
sets. When the character set is loaded, all characters of the set (up to 64)
are loaded into the printer's WCGM; only those characters that are referred
to by a translation table can be printed.

TABLE Module Structure
The character arrangement table data following the header information is composed
of the following components:

� A 256-byte translation table

� Four 2-byte fields for codes identifying character sets and their WCGM
sequence numbers

� Four 4-byte fields for graphic character modification module names

The translation table consists of 256 one-byte entries, each pointing to one of 64
positions within one of four WCGMs:

� Bits 0 and 1 of each translation table byte refer to one of four WCGMs and bits
2 through 7 point to one of 64 addresses (0-63) within the WCGM. If SETPRT
loads a character set into a WCGM other than the WCGM called for, SETPRT,
using a copy of the translation table, alters bits 0 and 1 of each non-X'FF'
byte of the translation table to correspond with the WCGM loaded. Figure 61
on page 152 describes the structure of the character arrangement table
module.

 IEBIMAGE (Create Printer Image) Program 151

 IEBIMAGE

0 1 2 3 4 5 6 7

These 6 bits reference one of 64 addresses
(0-63) in the WCGM

00 = WCGM0
01 = WCGM1
10 = WCGM2
11 = WCGM3

Figure 61. Character Arrangement Table Module Structure

� A byte value of X'FF' indicates an unusable character, prints as a blank, and
gives a data check. The data check is suppressed if the block data check
option is selected.

� One translation table can address multiple WCGMs, and multiple translation
tables can address one WCGM. The translation tables supplied by IBM address
either one or two WCGMs.

The next two components provide the linkage to character sets and graphic char-
acter modification modules. They consist of four 2-byte fields containing character
set IDs with their corresponding WCGM sequence numbers, followed by four
4-character names of graphic character modification modules. The format is as
follows:

� Each CGMID is a 1-byte character set ID containing two hexadecimal digits that
refer to a library character set (as listed in IBM 3800 Printing Subsystem
Programmer’s Guide). Each WCGMNO refers to the corresponding WCGM
sequence (X'00' to X'03'). Each name is the 4-character name of a graphic
character modification module.

� Most of the standard character arrangement tables do not need graphic char-
acter modification. The names are blank (X'40's) if no modules are referred to.

� The CGMIDx and the WCGMNOx are both X'00' when there are no character
sets referred to after the first one.

TABLE Module Listing
Figure 62 on page 153 shows the listing of a character arrangement table module.
The numbered notes that follow the figure describe the items marked with the encir-
cled numbers.

152 DFSMS/MVS V1R5 Utilities

 IEBIMAGE

CGMID0 WCGMN00 CGMID1 WCGMN01

WCGMN03CGMID3

Name1

Name2

Name3

Name4

WCGMN02CGMID2

Figure 62. IEBIMAGE Listing of a Character Arrangement Table Module

 IEBIMAGE (Create Printer Image) Program 153

 IEBIMAGE

Notes to Figure 62 :

1. The name of the character arrangement table module, as it exists in the direc-
tory of the image library (including the 4-byte system-assigned prefix).

2. The 1-byte identifier of an IBM-supplied character set (in this example, the Text
1 and Text 2 character sets, whose identifiers are X'8F' and X'11').

All character sets in SYS1.IMAGELIB or a user-specified image library are
represented by odd-numbered identifiers. For a 3800 Model 3, if the character
set identifier specified is even-numbered, it is increased by one at print time
and the character set with that identifier is loaded.

3. The sequence number of the WCGM that is to contain the character set indi-
cated below it (in this example, the second WCGM, whose identifier is 1).

4. The sequence number of the WCGM that contains the scan pattern for the 8-bit
data code that locates this translation table entry.

5. Your 8-bit data code X'B9' transmitted to the 3800 Model 3 addresses this,
the B9 location in the translation table, where the value X'39' in turn is the
index into the WCGM that contains the scan pattern to be used (in this
example, the Text 2 superscript 9).

6. An asterisk is shown in the listing for each translation table entry that contains
X'FF'. This indicates that the 8-bit data code that addresses this location does
not have a graphic defined for it and is therefore unprintable.

7. An asterisk in the list of character set identifiers indicates that no character set
is specified to use the corresponding WCGM. If you specify 7F or FF as a char-
acter set identifier (to allow accessing a WCGM without loading it), a 7F or FF
prints here.

8. The name of a graphic character modification module, as the name exists in
the library's directory (including the system-assigned prefix).

When you specify a graphic character modification module to be associated
with a character arrangement table, you must specify the OPTION statement
with the DEVICE parameter (for the 3800 Model 3) to ensure that the system
assigns the correct prefix (GRF2) to the graphic character modification module
name.

Creating a Graphic Character Modification Module
The 3800 graphic character modification module is variable length and contains up
to 64 segments. Each segment contains the 1 byte (for the 3800 Model 1) or 6
bytes (for the 3800 Model 3) of descriptive information and the 72-byte (for the
3800 Model 1) or 120-byte (for the 3800 Model 3) scan pattern of a graphic char-
acter.

The graphic character modification module is created using the INCLUDE,
GRAPHIC, OPTION and NAME utility control statements.

The INCLUDE statement identifies an existing graphic character modification
module that is to be copied and used as a basis for the new module.

To create graphic character modification modules in the syntax of the 3800 Model 3
compatibility mode module, the OPTION statement with the DEVICE parameter is
required.

154 DFSMS/MVS V1R5 Utilities

 IEBIMAGE

A GRAPHIC statement, when followed by one or more data statements, defines a
user-designed character. A GRAPHIC statement can also select a character
segment from another graphic character modification module. Each GRAPHIC
statement causes a segment to be created for inclusion in the new module.

The NAME statement identifies the new module and indicates that the module is to
be added to the library or is to replace an existing module of the same name. More
than one GRAPHIC statement can be coded between the INCLUDE and NAME
statements, and all such GRAPHIC statements apply to the same graphic character
modification module.

GRAPHIC Module Structure
The graphic character modification data following the header information is a series
of 73-byte segments for the 3800 Model 1 and 126-byte segments for the 3800
Model 3. A maximum of 64 such segments is allowed in a module. The module
structure is shown in Figure 63.

Figure 63. 3800 Graphic Character Modification Module Structure for One Character

When a graphic character is to be modified, the 3800 uses the translation table
code to index into the translation table. The contents found at that location (a
1-byte WCGM code) determine the WCGM location into which the scan pattern and
character data are to be placed.

For the 3800 Model 1Printing Subsystem:

The 72-byte graphic definition that makes up the scan pattern for one character is
divided into twenty-four 3-byte groups. Each 3-byte group represents a horizontal
row of eighteen 1-bit elements (plus parity information).

For the 3800 Model 3: The 120-byte graphic definition that makes up the scan
pattern for one character is divided into forty 3-byte groups. Each 3-byte group
represents a horizontal row of twenty-four 1-bit elements.

 IEBIMAGE (Create Printer Image) Program 155

 IEBIMAGE

GRAPHIC Module Listing
Figure 64 shows an extract from a listing of a graphic character modification
module. This extract contains the listing of two segments of the module. Each of
the notes following the figure describes the item in the figure that is marked with
the encircled number.

Figure 64. IEBIMAGE Listing of Two Segments of a Graphic Character Modification Module

Notes to Figure 64 :

1. The segment number of the character segment within the module.

2. The 8-bit data code for the character.

3. The pitch of the character.

4. The scan pattern for the character. A dollar sign ($) is printed instead of an
asterisk if the bit specified is out of the pitch range.

156 DFSMS/MVS V1R5 Utilities

 IEBIMAGE

Creating a Library Character Set Module
The 3800 library character set module is a fixed-length module made up of 64 seg-
ments. Each segment contains the 73 bytes (for the 3800 Model 1) or 126 bytes
(for the 3800 Model 3) of information including the scan pattern of a graphic char-
acter and a code (00-3F) that identifies the WCGM location into which the scan
pattern is to be loaded.

The library character set module is created using the INCLUDE, CHARSET and
NAME control statements.

The INCLUDE statement identifies an existing module.

The OPTION statement with the DEVICE parameter is required to create library
character set modules in the 3800 Model 3 compatibility mode module format.

A CHARSET statement, when followed by one or more data statements, defines a
user-designed character. A CHARSET statement can also select a character
segment from another library character set or from a graphic character modification
module.

The NAME statement specifies the ID of the character set being created and indi-
cates if it is to replace an existing module. More than one CHARSET statement can
be coded between the INCLUDE and NAME statements; all such CHARSET state-
ments apply to the same library character set module.

CHARSET Module Structure
The library character set data following the header information is a series of 73-byte
segments for the 3800 Model 1 and 126-byte segments for the 3800 Model 3. Each
module contains 64 segments. For each segment left undefined in a library char-
acter set module, IEBIMAGE inserts the graphic symbol for an undefined character.
The structure of a library character set module is shown in Figure 65.

Figure 65. 3800 Model 3 Library Character Set Module Structure for One Character

A library character set is loaded directly into a WCGM. SETPRT uses the 6-bit
code contained in the first byte of each 73-byte segment (for the 3800 Model 1) or
126-byte segment (for the 3800 Model 3) as the address of the WCGM location into

 IEBIMAGE (Create Printer Image) Program 157

 IEBIMAGE

which the remaining 72 bytes (for the 3800 Model 1) or 125 bytes (for the 3800
Model 3) are loaded.

For the 3800 Model 1: The 73-byte graphic definition that makes up the scan
pattern for one character is divided into twenty-four 3-byte groups. Each 3-byte
group represents a horizontal row of eighteen 1-bit elements.

For the 3800 Model 3: The 126-byte graphic definition that makes up the scan
pattern for one character is divided into forty 3-byte groups. Each 3-byte group
represents a horizontal row of twenty-four 1-bit elements.

CHARSET Module Listing
Figure 66 on page 159 shows an extract from a listing of a library character set
module. This extract contains the listing of two segments of the library character
set. The numbered notes that follow the figure describe the items marked with the
encircled numbers.

158 DFSMS/MVS V1R5 Utilities

 IEBIMAGE

Figure 66. IEBIMAGE Listing of Two Segments of a Library Character Set

Notes to Figure 66 :

1. The name of the library character set module, including the 4-byte system-
assigned prefix.

2. The segment number of the character segment within the module.

3. The 6-bit code for the WCGM location.

4. The pitch of the character.

5. The scan pattern for the character. A dollar sign ($) is printed instead of an
asterisk if the bit specified is out of the pitch range.

 IEBIMAGE (Create Printer Image) Program 159

 IEBIMAGE

Input and Output
IEBIMAGE uses the following input:

� A control data set that contains utility control statements
� Source statements produced by the Character Conversion Aid

IEBIMAGE produces the following output:

� A new module or modules for use with the 3800 Model 1 and Model 3 printers,
3262 Model 5 printer, or the 4248 printer, to be stored in an image library.
These may be of one of the following types:

– Forms control buffer modules (3800 or 4248)
– Copy modification modules (3800 only)
– Character arrangement table modules (3800 only)
– Graphic character modification modules (3800 only)
– Library character set modules (3800 only)

Note that, in building a 4248 FCB module, either a 4248 (prefix FCB4) or a
3211 (prefix FCB2) format FCB may be used as input. IEBIMAGE prefixes the
name with FCB4 first; then, if no module exists with that name, the prefix is
changed to FCB2. However, you cannot use IEBIMAGE to create an FCB2
module as output.

� An output data set listing for each new module which includes:

 – Module identification
– Utility control statements used in the job

 – Module contents
– Messages and return codes

See Appendix A for IEBIMAGE return codes.

 Control
IEBIMAGE is controlled by job and utility control statements.

Job Control Statements
Figure 67 shows the job control statements for IEBIMAGE.

Figure 67. Job Control Statements for IEBIMAGE

Statement Use

JOB Starts the job.

EXEC Specifies the program name (PGM=IEBIMAGE) or, if the job control
statements reside in the procedure library, the procedure name. No
PARM parameters can be specified.

SYSPRINT DD Defines the sequential message data set used for listing statements and
messages on the system output device.

SYSUT1 DD Defines the library data set (SYS1.IMAGELIB or a user-defined library).

SYSIN DD Defines the control data set, which normally resides in the input stream.

160 DFSMS/MVS V1R5 Utilities

 IEBIMAGE

SYSPRINT DD Statement
The block size for the SYSPRINT data set should be 121 or a multiple of 121. Any
blocking factor can be specified. The first character of each 121-byte output record
is an ISO/ANSI control character.

SYSUT1 DD Statement
To ensure that the library data set is not updated by other jobs while the IEBIMAGE
job is running, DISP=OLD should be specified on the SYSUT1 DD statement.

SYSUT1 DD may specify a user image library. This library must have the same
characteristics as SYS1.IMAGELIB, and can subsequently be identified to the
system with the SETPRT macro instruction, or renamed “SYS1.IMAGELIB.” If you
are using JES, you cannot specify a user image library with SETPRT. For informa-
tion about using your own image library with the 3800 Printing Subsystem, see IBM
3800 Printing Subsystem Programmer’s Guide For information on SETPRT, see
DFSMS/MVS Macro Instructions for Data Sets.

SYSIN DD Statement
The block size for the SYSIN data set must be 80 or a multiple of 80. Any blocking
factor can be specified. DCB information for the SYSIN DD statement should be
omitted from the JCL.

Utility Control Statements
IEBIMAGE is controlled by the utility control statements listed in Figure 68.

Continuation requirements for utility control statements are discussed in “Continuing
Utility Control Statements” on page 8.

Figure 68. Utility Control Statements for IEBIMAGE

Statement Use

FCB Creates a 3800 or 4248 forms control buffer module and stores it in an
image library.

COPYMOD Creates a 3800 copy modification module and stores it in an image
library.

TABLE Creates a 3800 character arrangement table module and stores it in an
image library.

GRAPHIC Creates a 3800 graphic character modification module and stores it in an
image library.

CHARSET Creates a 3800 library character set module and stores it in an image
library.

INCLUDE Identifies an existing image library module to be copied and used as a
basis for the new module.

NAME Specifies the name of a new or existing library module.

OPTION Specifies optional 3800 Model 3 or 4248 printer compatibility, or
COPYMOD overrun lines per inch for an IEBIMAGE job.

 IEBIMAGE (Create Printer Image) Program 161

 IEBIMAGE

 Operation Groups
IEBIMAGE utility control statements are grouped together to create or print a library
module. Each group of statements is called an operation group . Your job's input
stream can include many operation groups. The operation groups (shown below
without operands) that can be coded are:

� To create or print an FCB module:

 [OPTION]
 [INCLUDE]
 FCB
 NAME

Note: It is not possible to print a 4248 FCB module without coding some valid
operation on the FCB statement.

� To create or print a copy modification module:

 [INCLUDE]
 [OPTION]
 COPYMOD
 [additional COPYMOD statements]
 NAME

� To create or print a character arrangement table module:

 [INCLUDE]
 [OPTION]
 TABLE
 NAME

� To create or print a graphic character modification module:

 [INCLUDE]
 [OPTION]
 {GRAPHIC|GRAPHIC, followed immediately by data statements}
 [additional GRAPHIC statements]
 NAME

� To create or print a library character set module:

 [INCLUDE]
 [OPTION]
 {CHARSET|CHARSET, followed immediately by data statements}
 [additional CHARSET statements]
 NAME

To print a module, you need only supply the function statement (that is, FCB,
COPYMOD, TABLE, GRAPHIC or CHARSET) with no operands specified, followed
by the NAME statement naming the module. However, it is not possible to print a
4248 FCB module without coding some valid operation on the FCB statement.

 FCB Statement
The FCB statement specifies the contents of a forms control buffer (FCB) module
for the 3800, 3262 Model 5, or 4248 printer: spacing codes (lines per inch), channel
codes (simulated carriage-control channel punches), and the size of the form. For
the 4248 printer, the FCB statement also specifies print position for the horizontal
copy feature and printer speed, and whether the FCB image is to be used as a
default.

162 DFSMS/MVS V1R5 Utilities

 IEBIMAGE

The FCB statement must always be followed by a NAME statement, and can only
be preceded by an INCLUDE statement if DEVICE=4248 is specified on an
OPTION statement.

An FCB statement with no operands specified, followed by a NAME statement that
identifies a 3800 FCB module in the image library, causes the module to be for-
matted and printed. 3262 Model 5 and 4248 FCB modules cannot be printed by the
FCB statement unless a valid operation is performed on them. To build an FCB
module, you code the FCB statement with at least one operand. The format of a
printed FCB module is shown in “FCB Module Listing” on page 147.

The syntax of the FCB statement is:

where:

LPI=((l[,n])[,(l[,n])[,...]])
specifies the number of lines per inch and the number of lines to be printed at
that line spacing.

l specifies the number of lines per inch, and can be 6, 8, or 12 (for the 3800
Model 1); 6 or 8 (for the 3262 Model 5 or 4248); or 6, 8, 10, or 12 (for the
3800 Model 3).

n specifies the number of lines at a line spacing of l. When the printer uses
common-use paper sizes, n is a decimal value from 1 to 60 when l is 6;
from 1 to 80 when l is 8; from 1 to 100 when l is 10; and from 1 to 120
when l is 12.

When the printer uses ISO paper sizes, n is a value from 1 to 66 when l is
6; from 1 to 88 when l is 8; from 1 to 110 when l is 10; or from 1 to 132
when l is 12. For the paper sizes, see IBM 3800 Printing Subsystem
Programmer’s Guide.

It is your responsibility to ensure that the total number of lines specified results
in a length that is a multiple of 1/2 inch.

The total number of lines cannot result in a value that exceeds the usable
length of the form. For the 3800, do not specify coding for the top and bottom
1/2 inch of the form; IEBIMAGE does this for you.

When the SIZE, LINES, and LPI parameters are specified in the FCB state-
ment, each parameter value is checked against the others to ensure that there
are no conflicting page-length specifications. For example, SIZE=35 specifies a
3-1/2 inch length; acceptable LPI values for the 3800 cannot define more than
the printable 2-1/2 inches of this length.

When you specify more than one (l,n) pair, l must be specified for each pair
and n must be specified for each pair except the last.

[label] FCB [LPI=((l[,n])[,(l[,n])[,...]])]
[,CHx=(line[,line[,...]])[,CH x=(line[,line[,...]])[,...]]
[,SIZE=length]
[,LINES= lines]
[,COPYP=position]
[,PSPEED={L|M|H|N}]
[,DEFAULT={YES|NO }]

Note: COPYP, PSPEED and DEFAULT can only be specified for a 4248 FCB module

 IEBIMAGE (Create Printer Image) Program 163

 IEBIMAGE

When you specify 12 lines per inch, use one of the condensed character sets.
If other character sets are printed at 12 lines per inch, the tops or bottoms of
the characters may not print.

When only l is specified, or when l is the last parameter in the LPI list, all
remaining lines on the page are at l lines per inch.

When LPI is not specified, all lines on the page are at 6 lines per inch.

If the total number of lines specified is less than the maximum number that can
be specified, the remaining lines default to 6 lines per inch.

If INCLUDE is specified, the value for LPI may be taken from the included FCB
module. See the discussion on the module name parameter for the INCLUDE
statement.

CHx=(line[,line[,...]])
specifies the channel code (or codes) and the line number (or numbers) to be
skipped to when that code is specified.

CHx
specifies a channel code, where x is a decimal integer from 1 to 12.

line
specifies the line number of the print line to be skipped to, and is
expressed as a decimal integer. The first printable line on the page is line
number 1.

The value of line cannot be larger than the line number of the last printable
line on the form.

Only one channel code can be specified for a print line. However, more than
one print line can contain the same channel code.

Conventions:

� Channel 1 is used to identify the first printable line on the form. The job
entry subsystem and the CLOSE routines for direct allocation to the 3800
with BSAM or QSAM require a channel 1 code even when the data being
printed contains no skip to channel 1.

� Channel 9 is used to identify a special line. To avoid I/O interruptions that
are caused by use of channel 9, count lines to determine the line position.

� Channel 12 is used to identify the last print line on the form to be used. To
avoid I/O interruptions that are caused by use of channel 12, count lines to
determine the page size.

� Use of an FCB that lacks a channel code to stop a skip operation causes a
data check at the printer when the corresponding skip is issued. This data
check cannot be blocked.

If INCLUDE is specified, values for CHx may be taken from the included FCB
module. See the discussion under the module name parameter for the
INCLUDE statement.

SIZE=length
specifies the vertical length of the form, in tenths of an inch. See IBM 3800
Printing Subsystem Programmer’s Guide for the allowable lengths for the 3800.
The complete length of the form is specified (for example, with the 3800,
SIZE=110 for an 11-inch form) even though the amount of space available for

164 DFSMS/MVS V1R5 Utilities

 IEBIMAGE

printing is reduced by the 1/2-inch top and bottom areas where no printing
occurs.

When the SIZE, LINES and LPI keywords are specified in the FCB statement,
each parameter value is checked against the others to ensure that there are no
conflicting page-length specifications. For example, SIZE=35 specifies a 3-1/2
inch length; acceptable LPI values for the 3800 cannot define more than the
printable 2-1/2 inches of this length.

When SIZE is not specified, the form length defaults to the value specified in
LINES. If LINES is not specified, SIZE is assumed to be 11 inches (110).

If INCLUDE is specified, the value for SIZE may be taken from the included
FCB module. See the discussion under the module name parameter for the
INCLUDE statement.

LINES=lines
specifies the total number of lines to be contained in an FCB module.

lines
is the decimal number, from 1 to 256, which indicates the number of lines
on the page.

When the LINES, SIZE, and LPI parameters are specified in the FCB state-
ment, each parameter value is checked against the others to ensure that there
are no conflicting page-length specifications.

When LINES is not specified, the form length defaults to the value of LPI multi-
plied by the value of SIZE, in inches. If no SIZE parameter is specified, LINES
defaults to 11 times the value of LPI.

If INCLUDE is specified, the value for LINES may be taken from the included
FCB module. See the discussion under the module name parameter of the
INCLUDE statement.

COPYP=position
specifies the position (the number of character spaces from the left margin) at
which the horizontal copy is to begin printing.

position
is a decimal number, from 2 to 168, which indicates where the horizontal
copy printing will start. If your 4248 printer has only 132 print positions, the
maximum number you should specify here is 132.

If COPYP=0 is coded, any COPYP value previously set in an included FCB
module is overridden, and the horizontal copy feature is turned off. You
may not specify COPYP=1.

If INCLUDE is specified, and the included FCB module is formatted for a 4248
printer only, the default is the COPYP value for the included FCB module. Oth-
erwise, if no COPYP value is specified, the default value is 0.

COPYP is not valid for 3800 FCB modules; it is ignored for 3262 Model 5 FCB
modules.

The COPYP value specified affects the maximum amount of data that may be
sent to the printer. Channel programs that are run with the horizontal copy
feature activated must set the suppress incorrect length (SIL) bit and have a
data length that does not exceed the size of either one half the number of print
positions or the smaller of the two copy areas.

 IEBIMAGE (Create Printer Image) Program 165

 IEBIMAGE

PSPEED={L|M|H|N}
specifies the print speed for the 4248 printer. Note that printer speed affects the
quality of printing; LOW speed provides the best quality.

L or LOW
sets the printer speed to 2200 lines per minute (LPM).

M or MEDIUM
sets the printer speed to 3000 LPM.

H or HIGH
sets the printer speed to 3600 LPM.

N or NOCHANGE
indicates that the current printer speed should remain unchanged.

If INCLUDE is specified, and the included module is formatted for a 4248
printer only, the default is the PSPEED value for the included FCB module.
Otherwise, the default is NOCHANGE (or N).

PSPEED is not valid for 3800 FCB modules. PSPEED is ignored for 3262
Model 5 FCB modules.

DEFAULT={YES|NO }
specifies if this 4248 FCB image is to be treated as the default image by OPEN
processing. Default images are used by the system for jobs that do not request
a specific image.

If a job does not request a specific FCB image, and the current image is not a
default, the operator will be prompted for an FCB image at OPEN time.

If INCLUDE is used to copy a 4248 FCB module that was originally specified as
a default image, the new module will also be considered a default image unless
DEFAULT=NO is now specified.

DEFAULT is not valid for 3800 FCB images.

 COPYMOD Statement
A copy modification module consists of header information, followed by one or
more modification segments. The header information contains the module's name
and length. Each modification segment contains the text to be printed, identifies the
copy (or copies) the text applies to, and specifies the position of the text on each
page of the copy.

A COPYMOD statement specifies the contents of one of the modification segments
of a copy modification module. More than one COPYMOD statement can be coded
in an operation group; all COPYMOD statements so coded apply to the same copy
modification module.

IEBIMAGE analyzes the modification segments specified for a copy modification
module to anticipate line overrun conditions that may occur when the module is
used in the printer. A line overrun condition occurs when the modification of a line
is not completed in time to print that line. The time available for copy modification
varies with the vertical line spacing (lines per inch) at which the printer is being
operated.

When IEBIMAGE builds a copy modification module from your specifications, the
program calculates an estimate of the time the modification will require during the

166 DFSMS/MVS V1R5 Utilities

 IEBIMAGE

planned printing. If the modification can be done in the time available for printing a
line at 12 LPI (lines per inch), it can also be done at 6 or 8 LPI (for the Model 1), or
6, 8, or 10 LPI (for the Model 3). (Note that 6, 8, 10 and 12 LPI are the only print
densities available on the 3800 Model 3 printer.) However, if the copy modification
module being built is too complex to be done in the time available for printing a line
at 6 LPI, it certainly cannot be done at 8, 10 (for the Model 3 only), or 12 LPI. (Note
that at 10 and 12 LPI there is much less time available for printing a line than at 6
LPI.)

When IEBIMAGE determines that a copy modification module is likely to cause an
overrun if it is used when printing at a specified number of lines per inch, the
program produces a warning message to that effect. If the warning applies to 6 LPI,
the overrun condition is also applicable to 8, 10 (for the Model 3 only), and 12 LPI.
If the warning applies to 8 LPI, the condition is also applicable for 10 (for the Model
3 only) and 12 LPI. If the warning applies to 10 LPI, the condition also applies to 12
LPI.

If you are planning to use a particular copy modification module only while printing
at 6 LPI, you can request suppression of the unwanted warning messages for 8, 10
(for the Model 3 only), and 12 LPI by specifying the OPTION statement with 6 as
the value of the OVERRUN parameter. If you are planning to print only at 8 LPI,
you can use the OPTION statement with OVERRUN=8 to request suppression of
the unwanted warning messages for 10 (for the Model 3 only) and 12 LPI. For
more information on coding OVERRUN, see “Using OVERRUN” on page 178. For
information about using your copy modification module, see IBM 3800 Printing Sub-
system Programmer’s Guide. The copy modification text can be printed using the
same character size or style, or one different from the size or style used to print the
data in the output data set.

The COPYMOD statement must always be followed by a NAME statement or
another COPYMOD statement and can be preceded by an INCLUDE statement.
When more than one COPYMOD statement is coded, IEBIMAGE sorts the state-
ments into order by line number within copy number. A COPYMOD statement with
no operands specified, followed by a NAME statement that identifies a copy modifi-
cation module, is used to format and print the module. The syntax of the printed
module is shown under “COPYMOD Module Listing” on page 150.

The syntax of the COPYMOD statement, when used to create a copy modification
module's segment, is:

where:

COPIES=(starting-copy[,copies])
specifies the starting copy number and the total number of copies to be modi-
fied.

starting-copy
specifies the starting copy number and is expressed as a decimal integer
from 1 to 255. The starting-copy value is required.

[label] COPYMOD COPIES=(starting-copy[,copies])
,LINES=(starting-line[,lines])
 ,POS=position
,TEXT=(([d]t,'text')[,([d]t,'text')][,...])

 IEBIMAGE (Create Printer Image) Program 167

 IEBIMAGE

copies
specifies the number of copies that are to contain the modifying text and is
expressed as a decimal integer from 1 to 255. When copies is not speci-
fied, the default is 1 copy.

The sum of starting-copy and copies cannot exceed 256 (255 for JES3).

LINES=(starting-line[,lines])
specifies the starting line number and the total number of lines to be modified.

starting-line
specifies the starting line number, and is expressed as a decimal integer
from 1 to 132. The starting-line value is required.

lines
specifies the number of lines that are to contain the modification segment's
text, and is expressed as a decimal integer from 1 to 132. When lines is
not specified, the default is 1 line.

The sum of starting-line and lines cannot exceed 133. If the sum exceeds the
number of lines specified for the form size (in the FCB statement), the modi-
fying text is not printed on lines past the end of the form.

POS=position
specifies the starting print position (the number of character positions from the
left margin) of the modifying text.

position
specifies the starting print position and is expressed as an integer from 1 to
204. See the restriction noted for the TEXT parameter below.

The maximum number of characters that can fit in a print line depends on the
pitch of each character and the width of the form.

For the maximum number of characters that can fit in a print line for each form
width, see IBM 3800 Printing Subsystem Programmer’s Guide.

TEXT=(([d]t,'text')[,([d]t,'text')][,...])
specifies the modifying text. The text is positioned on the form based on the
LINES and POS parameters and replaces the output data set's text in those
positions.

d specifies a duplication factor (that is, the number of times the text is to be
repeated). The d is expressed as a decimal integer from 1 to 204. If d is
not specified, the default is 1.

t specifies the form in which the text is entered: C for character, or X for
hexadecimal. The t is required.

text
specifies the text and is enclosed in single quotation marks.

If the text type is C, you can specify any valid character. Blanks are valid
characters. A single quotation mark is coded as two single quotation marks.
You are not allowed to specify a character that results in a X'FF'. If the
text type is X, the text is coded in increments of two characters that specify
values between X'00' and X'FE'. You are not allowed to specify X'FF'.

The sum of the starting print position (see the POS parameter) and the total
number of text characters cannot exceed 205. If the width of the form is less

168 DFSMS/MVS V1R5 Utilities

 IEBIMAGE

than the amount of space required for the text (based on character pitch,
starting position, and number of characters), characters are not printed past the
right margin of the form.

If a text character specifies a character whose translation table entry contains
X'FF', the printer sets the Data Check error indicator when the copy modifica-
tion module is loaded. This error indicator can be blocked.

 TABLE Statement
The TABLE statement is used to build a character arrangement table module.
When a character arrangement table is built by IEBIMAGE and an INCLUDE state-
ment is specified, the contents of the copied character arrangement table are used
as a basis for the new character arrangement table. If an INCLUDE statement is
not specified, each translation table entry in the new character arrangement table
module is initialized to X'FF', the graphic character modification module name
fields are set with blanks (X'40'), and the first character set identifier is set to
X'83' (which is the Gothic 10-pitch set). The remaining identifiers are set to X'00'.

After the character arrangement table is initialized, IEBIMAGE modifies the table
with data specified in the TABLE statement: character set identifiers, names of
graphic character modification modules, and specified translation table entries. The
character arrangement table, when built, must contain a reference to at least one
printable character. Only one TABLE statement can be specified for each operation
group. The TABLE statement can be preceded by an INCLUDE statement and an
OPTION statement and must always be followed by a NAME statement.

A TABLE statement with no operands specified, followed by a NAME statement
that identifies a character arrangement table module in the library, causes the
module to be formatted and printed. The TABLE statement should be preceded by
an OPTION statement with the DEVICE=3800M3 parameter for a 3800 Model 3.
The format of the printed character arrangement table module is shown under
“TABLE Module Listing” on page 152.

The syntax of the TABLE statement is:

where:

CGMID=(set0[,set1][,...])
identifies the character sets that are to be used with the character arrangement
table. (The IBM-supplied character sets and their identifiers are described in
IBM 3800 Printing Subsystem Programmer’s Guide.) When CGMID is specified,
all character set identifiers are changed. If only one character set is specified,
the other three identifiers are set to X'00'.

setx
is a 1-byte identifier of a character set. Up to four character set identifiers
can be specified; set0 identifies the character set that is to be loaded into
the first writable character generation module (WCGM); set1 is loaded into
the second WCGM; and so forth. You should ensure that the character set
identifiers are specified in the proper sequence, so that they are coordi-
nated with the translation table entries.

[label] TABLE [CGMID=(set0[, set1][,...])]
[,GCMLIST={(gcm1[, gcm2][,...])|DELETE}]
[,LOC=((xloc[, {cloc[,setno]| FF}])[,...])]

 IEBIMAGE (Create Printer Image) Program 169

 IEBIMAGE

GCMLIST={(gcm1[,gcm2][,...])|DELETE}
names up to four graphic character modification modules to be associated with
the character arrangement table. When GCMLIST is specified, all graphic char-
acter modification module name fields are changed (if only one module name is
specified, the other three name fields are set to blanks).

gcmx
is the 1- to 4-character name of the graphic character modification module.
Up to four module names can be specified. The name is put into the char-
acter arrangement table, whether a graphic character modification module
currently exists with that name. However, if the module does not exist,
IEBIMAGE issues a warning message to you. The character arrangement
table should not be used unless all graphic character modification modules
it refers to are stored in an image library.

DELETE
specifies that all graphic character modification module name fields are to
be set to blanks.

LOC=((xloc[,{cloc[,setno]| FF}])[,...])
specifies values for some or all of the 256 translation table entries. Each trans-
lation table entry identifies one of 64 character positions within one of the
WCGMs.

xloc
is an index into the translation table, and is specified as a hexadecimal
value from X'00' to X'FF'; xloc identifies a translation table entry, not the
contents of the entry.

cloc
identifies one of the 64 character positions within a WCGM, and is specified
as a hexadecimal value between X'00' and X'3F'. When cloc is not spec-
ified, the default is X'FF', an incorrect character.

setno
identifies one of the WCGMs, and is specified as a decimal integer from 0
to 3. When setno is not specified, the default is 0. The setno cannot be
specified unless cloc is also specified.

Cloc and setno specify the contents of the translation table entry located by
xloc. You can specify the same cloc and setno values for more than one xloc.

 GRAPHIC Statement
The GRAPHIC statement specifies the contents of one or more of the character
segments of a graphic character modification module. A graphic character modifica-
tion module consists of header information followed by from 1 to 64 character seg-
ments. Each character segment contains

� The character's 8-bit data code, its scan pattern, and its pitch (for the 3800
Model 1)

� Six bytes of descriptive information and the 120-byte scan pattern (for the 3800
Model 3)

By using the INCLUDE statement, you can copy an entire module, minus any seg-
ments deleted using the DELSEG keyword. In addition, you can select character
segments from any module named with the GCM keyword on the GRAPHIC state-

170 DFSMS/MVS V1R5 Utilities

 IEBIMAGE

ment. The GRAPHIC statement can also specify the scan pattern and character-
istics for a new character.

The GRAPHIC statement must always be followed by a NAME statement, another
GRAPHIC statement, or one or more data statements. The OPTION statement with
the DEVICE parameter must precede the GRAPHIC statement to create a graphic
character modification module in the 3800 Model 3 compatibility mode module
format. The GRAPHIC statement can be preceded by an INCLUDE statement.
More than one GRAPHIC statement can be coded in the operation group. The
operation group can include GRAPHIC statements that select characters from
existing modules and GRAPHIC statements that create new characters. The
GRAPHIC statement, preceded by an INCLUDE statement, can be used to delete
one or more segments from the copy of an existing module to create a new
module.

A GRAPHIC statement with no operands specified, followed by a NAME statement
that identifies a graphic character modification module, is used to format and print
the module. When you specify a graphic character modification module to be
printed for a 3800 Model 3, you must specify the OPTION statement with the
DEVICE parameter to ensure that the system assigns the correct prefix (GRF2) to
the graphic character modification module name.

The syntax of the GRAPHIC statement, when it is used to select a character
segment from another graphic character modification module, is:

where:

REF=((segno[,xloc])[,(segno[,xloc])][,...])
identifies one or more character segments within an existing graphic character
modification module. Each character segment contains the scan pattern for a
character and the 6 bytes of descriptive information (used to locate its translate
table entry). The 6 bytes of descriptive information can be respecified with the
xloc subparameter. The REF parameter cannot be used to change a charac-
ter's pitch or scan pattern.

segno
is the segment number, a decimal integer between 1 and 999. When a
character segment is copied from the IBM-supplied World Trade National
Use Graphics graphic character modification module, segno can be greater
than 64. When the character segment is copied from a graphic character
modification module built with the IEBIMAGE program, segno is a number
from 1 to 64.

xloc
specifies an 8-bit data code for the character, and can be any value
between X'00' and X'FF'. You should ensure that xloc identifies a trans-
late table entry that points to a character position in the WCGM (that is, the
translate table entry does not contain X'FF'). If xloc is not specified, the
character's 8-bit data code remains unchanged when the segment is
copied.

[label] GRAPHIC [REF=((segno[,xloc])[,(segno[,xloc])][,...])
 [,GCM=name]]

 IEBIMAGE (Create Printer Image) Program 171

 IEBIMAGE

The REF parameter can be coded in a GRAPHIC statement that includes the
ASSIGN parameter.

GCM=name
can be coded when the REF parameter is coded and identifies the graphic
character modification module that contains the character segments referred to
by the REF parameter.

name
specifies the 1- to 4-character user-specified name of the graphic character
modification module.

If GCM is coded, REF must also be coded.

When GCM is not coded, the segments are copied from the IBM-supplied
World Trade National Use Graphics graphic character modification module.

The syntax of the GRAPHIC statement, when it is used to specify the scan pattern
and characteristics of a newly-created character, is:

where:

ASSIGN=(xloc[,pitch])
identifies a newly-created character and its characteristics. The ASSIGN param-
eter specifies the new character's 8-bit data code and its pitch. When
IEBIMAGE detects the ASSIGN parameter, it assumes that all following state-
ments, until a statement without the characters SEQ= in columns 25 through 28
is encountered, are data statements that specify the character's scan pattern.

xloc
specifies the character's 8-bit data code, and can be any value between
X'00' and X'FF'. You should ensure that xloc identifies a translation table
entry that points to a character position in a WCGM (that is, the translation
table entry does not contain X'FF'). The xloc is required when ASSIGN is
coded.

pitch
specifies the character's horizontal size and is one of the decimal numbers
10, 12, or 15. If pitch is not specified, the default is 10.

At least one data statement must follow a GRAPHIC statement containing the
ASSIGN parameter.

data statements
describe the design of the character as it is represented on a character design
form. For details of how to design a character and how to use the character
design form, see IBM 3800 Printing Subsystem Programmer’s Guide.

Each data statement represents a line on the design form. Each nonblank line
on the design form must be represented with a data statement; a blank line can
also be represented with a data statement. You can code up to 24 (for 3800
Model 1) or 40 (for 3800 Model 3) data statements to describe the new charac-
ter's pattern.

On each statement, columns 1 through 18 (for Model 1) or 24 (for Model 3) can
contain nonblank grid positions when the character is 10-pitch. Any nonblank

[label] GRAPHIC ASSIGN=(xloc[,pitch])
data statements SEQ=nn

172 DFSMS/MVS V1R5 Utilities

 IEBIMAGE

character can be punched in each column that represents a nonblank grid posi-
tion. Columns 1 through 15 (for Model 1) or 20 (for Model 3) can contain non-
blank grid positions when the character is 12-pitch. Columns 1 through 15 (for
Model 1) or 1 through 16 (for Model 3) can contain nonblank grid positions
when the character is 15-pitch.

SEQ=nn
specifies the sequence number that must appear in columns 25 through 30 of
the data statement and identifies the line as a data statement; nn specifies a
line number (corresponding to a line on the character design form) and is a
2-digit decimal number from 01 to 40.

 CHARSET Statement
The CHARSET statement specifies the contents of one or more of the character
segments of a library character set module. A library character set module consists
of header information followed by 64 character segments. Each character segment
contains the character's 6-bit code for a WCGM location, its scan pattern, and its
pitch. You can use the INCLUDE statement to copy an entire module, minus any
segments deleted using the DELSEG keyword. In addition, you can use the
CHARSET statement to select character segments from any module named with a
library character set ID or the GCM keyword. The CHARSET statement can also
specify the scan pattern and characteristics for a new character.

The CHARSET statement must always be followed by a NAME statement, another
CHARSET statement, or one or more data statements. The CHARSET statement
must be preceded by an OPTION statement with the DEVICE parameter if you
want to create library character set modules in the 3800 Model 3 compatibility
mode module format. The CHARSET statement can be preceded by an INCLUDE
statement. More than one CHARSET statement can be coded in the operation
group. The operation group can include CHARSET statements that select charac-
ters from existing modules and CHARSET statements that create new characters.
The CHARSET statement, preceded by an INCLUDE statement, can be used to
delete one or more segments from the copy of an existing module to create a new
module.

A CHARSET statement with no operands specified, followed by a NAME statement
that identifies a library character set module, is used to format and print the
module.

The syntax of the CHARSET statement, when it is used to select a character
segment from another module, is:

where:

REF=((segno,cloc)[,(segno,cloc)][,...])
identifies one or more character segments within an existing graphic character
modification module or library character set module. If the reference is to a
GCM, the scan pattern and pitch of the character referred to are used, and a
6-bit WCGM location code is assigned. If the reference is to a character in a
library character set, the entire segment, including the 6-bit WCGM location

[label] CHARSET [REF=((segno,cloc) [,(segno,cloc)][,...])
 [,{GCM=name|ID=xx}]]

 IEBIMAGE (Create Printer Image) Program 173

 IEBIMAGE

code, is used, unless the cloc subparameter is specified for that segment. The
REF parameter cannot be used to change a character's pitch or scan pattern.

segno
is the segment number, a decimal integer between 1 and 999. When a
character segment is copied from the IBM-supplied World Trade National
Use Graphics graphic character modification module, segno can be greater
than 64. When the character segment is copied from a graphic character
modification or library character set module built with the IEBIMAGE
program, segno is a number from 1 to 64.

cloc
specifies a 6-bit code that points to a WCGM location, and can be any
value between X'00' and X'3F'. When a library character set segment is
referred to, if cloc is not specified, the character's 6-bit code remains
unchanged when the segment is copied. If a graphic character modification
segment is referred to, cloc must be specified.

The REF parameter can be coded in a CHARSET statement that includes the
ASSIGN parameter.

GCM=name
can be coded when the REF parameter is coded and identifies the graphic
character modification module that contains the character segments referred to
by the REF parameter.

name
specifies the 1- to 4-character user-specified name of the graphic character
modification module.

If GCM is coded, REF must also be coded. GCM should not be coded with ID.

When neither GCM nor ID is coded, the segments are copied from the
IBM-supplied World Trade National Use Graphics graphic character modifica-
tion module.

ID=xx
can be coded when the REF parameter is coded and identifies a library char-
acter set that contains the character segments referred to by the REF param-
eter.

xx specifies the 2-hexadecimal-digit ID of the library character set module.
The second digit must be odd, and '7F' and 'FF' are not allowed.

ID should not be coded with GCM.

When neither ID nor GCM has been coded, the segments are copied from the
IBM-supplied World Trade National Use Graphics graphic character modifica-
tion module.

The syntax of the CHARSET statement, when it is used to specify the scan pattern
and characteristics of a newly-created character, is:

where:

[label] CHARSET ASSIGN=(cloc[,pitch])
data statements SEQ=nn

174 DFSMS/MVS V1R5 Utilities

 IEBIMAGE

ASSIGN=(cloc[,pitch])
identifies a newly-created character and its characteristics. The ASSIGN param-
eter specifies the new character's 6-bit code and its pitch. When IEBIMAGE
detects the ASSIGN parameter, the program assumes that all following state-
ments, until a statement without the characters SEQ= in columns 25 through 28
is encountered, are data statements that specify the character's scan pattern.

cloc
specifies the character's 6-bit code for a WCGM location and can be any
value between X'00' and X'3F'. Cloc is required when ASSIGN is coded.

pitch
specifies the character's horizontal size and is one of the following decimal
numbers: 10, 12, or 15. If pitch is not specified, the default is 10.

At least one data statement must follow a CHARSET statement containing the
ASSIGN parameter.

data statements
describe the design of the character as it is represented on a character design
form. For details of how to design a character and how to use the character
design form, see IBM 3800 Printing Subsystem Programmer’s Guide.

Each data statement represents a line on the design form. Each nonblank line
on the design form must be represented with a data statement; a blank line can
also be represented with a data statement. You can code up to 24 (for 3800
Model 1) or 40 (for 3800 Model 3) data statements to describe the new charac-
ter's pattern.

On each statement, columns 1 through 18 (for Model 1) or 24 (for Model 3) can
contain nonblank grid positions when the character is 10-pitch. Any nonblank
character can be punched in each column that represents a nonblank grid posi-
tion. Columns 1 through 15 (for Model 1) or 20 (for Model 3) can contain non-
blank grid positions when the character is 12-pitch. Columns 1 through 15 (for
Model 1) or 1 through 16 (for Model 3) can contain nonblank grid positions
when the character is 15-pitch.

SEQ=nn
specifies the sequence number that must appear in columns 25 through 30 of
the data statement and identifies the line as a data statement; nn specifies a
line number (corresponding to a line on the character design form) and is a
2-digit decimal number from 01 to 40.

 INCLUDE Statement
When an IEBIMAGE operation group is used to create a new module, the
INCLUDE statement can identify an existing image library module to be copied and
used as a basis for the new module. When the operation group is used to update
an image library module, the INCLUDE statement identifies the module to be
referred to and must be specified.

� When the INCLUDE statement is coded in an operation group, it must precede
any FCB, COPYMOD, TABLE, GRAPHIC, or CHARSET statements.

� Only one INCLUDE statement should be coded for each operation group. If
more than one is coded, only the last is used; the others are ignored.

� You can code an INCLUDE statement for an FCB module only if the
DEVICE=4248 parameter is specified on the OPTION statement. Either 3211

 IEBIMAGE (Create Printer Image) Program 175

 IEBIMAGE

format or 4248 format FCBs may be included. IEBIMAGE tries to locate the
4248 format FCB first; if it is not found, IEBIMAGE looks for the 3211 format.

� You cannot copy a 3800 FCB module with INCLUDE.

The syntax of the INCLUDE statement is:

where:

module name
names or identifies a library module. The module name is 1 to 4 alphanumeric
and national ($, #, and @) characters, in any order, or, for a library character
set module, a 2-character ID that represents two hexadecimal digits (0-9, A-F),
the second digit being odd. Note that 7F and FF cannot be used.

For a 3800 INCLUDE operation, the named module must be the same type as
the module being created.

However, for the 4248 printer, if the named FCB module is not found to exist
with the prefix FCB4, an existing 3211 FCB module (prefix FCB2) with the
same module name will be used. In this case, the values specified for the
LINES, SIZE, CHx, and LPI parameters on the FCB statement will default to
the values previously specified in the included module if the new values are not
compatible with the 3211 printer. If the 3211 module was a default image, the
4248 module will also be a default image unless the DEFAULT parameter is
specified as NO.

DELSEG=(segno[,segno][,...])
specifies the segments of the copied module that are to be deleted when the
module is copied. Segment numbers can be specified in any order. In this
parameter, segment 1 is used to refer to the first segment of the module. When
you code the DELSEG parameter, you should use a current listing of the mod-
ule's contents to ensure that you are correctly identifying the unwanted seg-
ments.

You can code the DELSEG parameter only when the named module is a copy
modification module, a graphic character modification module, or a library char-
acter set module.

[label] INCLUDE module name
[,DELSEG=(segno[, segno][,...])]

 NAME Statement
The NAME statement can name a new library module to be built by the IEBIMAGE
program. The NAME statement can also specify the name of an existing library
module. The NAME statement is required, and must be the last statement in each
operation group.

The syntax of the NAME statement is:

where:

module name
names or identifies a library module. The module name is 1 to 4 alphanumeric
and national ($, #, and @) characters, in any order, or, for a library character

[label] NAME module name[(R)]

176 DFSMS/MVS V1R5 Utilities

 IEBIMAGE

set module, a 2-character ID that represents two hexadecimal digits (0-9, A-F),
the second digit being odd. Note that 7F and FF cannot be used.

If you are creating a 4248 FCB module, the name you specify will be prefixed
with FCB4, even if you used a 3211 FCB module (prefix FCB2) as input on an
INCLUDE statement. You cannot create or replace FCB2 modules with
IEBIMAGE.

(R)
indicates that this module is to be replaced by a new module with the same
name, if it exists. R must be coded in parentheses.

 OPTION Statement
To create library character set modules and graphic character modification modules
in a form usable on the 3800 Model 3, the OPTION statement with the
DEVICE=3800M3 parameter is required. The OPTION statement with the
DEVICE=3800M3 parameter is optional when creating copy modification modules
and character arrangement table modules.

To create a forms control buffer module for the 3262 Model 5 or 4248 printer, the
OPTION statement with the DEVICE=4248 parameter is required. DEVICE=4248
cannot be used to create any module other than an FCB.

The OPTION statement with the OVERRUN parameter is used only in a
COPYMOD operation group and can be placed before or after any INCLUDE state-
ment for the group. The value in the OVERRUN parameter specifies the greatest
line density for which you want the overrun warning message IEBA33I to be
printed. See “Using OVERRUN” on page 178 for information about overrun condi-
tions and suppression of overrun warning messages.

An effective use of the OPTION statement with the OVERRUN parameter would be
to determine the greatest print-line density (6, 8, 10, 12) at which the copy modifi-
cation module will be used, then specify that density in the OVERRUN parameter to
eliminate the warning messages for higher line densities.

The OPTION statement applies only to the operation group that follows it. If used,
the OPTION statement must be specified for each operation group in the job input
stream.

The syntax of the OPTION statement is:

where:

DEVICE={3800M3|4248}
specifies printer compatibility mode module formats and processing consider-
ations.

3800M3
specifies 3800 Model 3 compatibility.

[label] OPTION [DEVICE={3800M3|4248}]
[,OVERRUN={0|6|8|10|12 }]

 IEBIMAGE (Create Printer Image) Program 177

 IEBIMAGE

4248
specifies that the module created or modified with the FCB statement
should be formatted for the 3262 Model 5 or 4248 printer. See Figure 56
on page 146 for the syntax of the 4248 FCB module.

If the DEVICE parameter is omitted, modules are created for the 3800 Model 1.

OVERRUN={0|6|8|10|12 }
specifies the greatest number of lines per inch for which message IEBA33I is to
be printed for a COPYMOD operation. For example, OVERRUN=8 allows the
message for 6 and 8 lines per inch, but suppresses it for 10 and 12 lines per
inch. Specifying OVERRUN=0 suppresses message IEBA33I for every case. If
you specify OVERRUN=12, none will be suppressed.

OVERRUN=10 is valid only for the 3800 Model 3.

If the OPTION statement is omitted, the OVERRUN parameter default value is
12, and messages are not suppressed. If the OVERRUN parameter is omitted,
the default value is also 12.

If the parameter specification is incorrect (for instance, if OVERRUN=16 is
specified), the entire operation group does not complete successfully.

For details of using the OVERRUN parameter with COPYMOD, see “Using
OVERRUN.”

 Using OVERRUN
Figure 69 shows the listing of segments of a copy modification module where an
overrun warning was in order. Even if the OPTION statement specifies
OVERRUN=0 and the overrun warning message is not printed, a note is printed to
the left of each segment description for which an overrun is possible.

Factors used in determining a line overrun condition are:

� Number of modifications per line
� Number of segments per module

Combining COPYMOD segments reduces the possibility of a line overrun condition.

For the algorithm for calculating when a copy modification module may cause a line
overrun condition, see Reference Manual for the IBM 3800 Printing Subsystem
Model 1.

178 DFSMS/MVS V1R5 Utilities

 IEBIMAGE

Figure 69. IEBIMAGE Listing of a Copy Modification Module with Overrun Notes

Notes Segment

Initial
Copy
Number

Number
of Copies

Initial
Line
Number

Number
of Lines

Initial
Print
Position

Number of
Characters

Note(0)1 1 1 200 10 96 10 180

Note(1)2 2 2 200 10 96 11 180

Note(1)2 3 3 200 10 96 12 180

Note(2)3 4 4 200 10 96 10 180

Note(2)3 5 5 200 10 96 11 180

Note(3)4 6 6 200 10 96 12 180

Note(3)4 7 7 200 10 96 10 180

Note(3)4 8 8 200 10 96 11 180

Note(3)4 9 9 200 10 96 12 180

Notes:

1. Indicates that you may have a copy modification overrun if you are printing at 12 LPI.

2. Indicates that you may have a copy modification overrun if you are printing at 8 LPI.

3. Indicates that you may have a copy modification overrun if you are printing at 8 or 12 LPI.

4. Indicates that you may have a copy modification overrun if you are printing at 6, 8, or 12 LPI; in other
words, you may have an overrun at any LPI.

 IEBIMAGE Examples
The following examples illustrate some of the uses of IEBIMAGE. Figure 70 can be
used as a quick-reference guide to the examples that follow.

Usually, examples for the IBM 3800 Model 3 can be changed to IBM 3800 Model 1
examples by deleting the OPTION DEVICE=3800M3 statement and specifying the
OVERRUN parameter equal to a number other than 10.

 IEBIMAGE (Create Printer Image) Program 179

 IEBIMAGE

Figure 70. IEBIMAGE Example Directory

Module Created Printer Comments Example

CHARSET 3800 Model 1 Entire library character set with scan patterns printed. 19

CHARSET 3800 Model 3 Segments copied from IBM-supplied GRAPHIC module. 20

CHARSET 3800 Model 3 New module contains a user-designed character. Existing char-
acter arrangement (TABLE) modified to include new character.

21

CHARSET 3800 Model 1 Segments copied from existing module. User-designed character
created.

22

COPYMOD 3800 Model 1 4 modification segments. 8

COPYMOD 3800 Model 3 Existing module used as basis for new module. OVERRUN
specified.

9

FCB 3800 Model 1 11-inch form 1

FCB 3800 Model 1 5-1/2 inch form, replaces existing SYS1.IMAGELIB member.
Multiple channel codes specified.

2

FCB 3800 Model 1 3-1/2 inch form, replaces existing SYS1.IMAGELIB member.
Varied vertical spacing.

3

FCB 3800 Model 1 7-inch form, varied vertical spacing. 4

FCB 3800 Model 1 12-inch ISO form. Replaces IBM-supplied module. 5

FCB 3800 Model 3 7-1/2 inch ISO form. Varied vertical spacing. 6

FCB 4248 11-inch form, based on existing module. New print speed and
copy position specified.

7

GRAPHIC 3800 Model 1 Entire IBM-supplied module printed. 14

GRAPHIC 3800 Model 3 Segments copied from IBM-supplied module. 15

GRAPHIC 3800 Model 3 New module contains a user-designed character. Existing char-
acter arrangement (TABLE) modified to include new character.

16

GRAPHIC 3800 Model 1 Segments copied from existing module. User-designed character
created.

17

GRAPHIC 3800 Model 3 New GRAPHIC module contains a user-designed character.
Existing character arrangement (TABLE) modified to include new
character. COPYMOD created to print new character. Result
tested.

18

TABLE 3800 Model 3 IBM-supplied module modified to include another character. 10

TABLE 3800 Model 3 Existing module used as basis for new module. Pitch changed. 11

TABLE 3800 Model 1 Existing module used as basis for new module. Includes user-
designed characters of GRAPHIC module.

12

TABLE 3800 Model 3 Existing module used as basis for new module. New module
deletes all GRAPHIC references and resets translation table
entries.

13

Example 1: Build a New 3800 Forms Control Buffer Module

180 DFSMS/MVS V1R5 Utilities

 IEBIMAGE

3800 Model 1
In this example, the vertical spacing and channel codes for an 11-inch form are
specified, and the module is added to the SYS1.IMAGELIB data set as a new
member.

 //FCBMOD1 JOB ...
 //STEP1 EXEC PGM=IEBIMAGE
 //SYSUT1 DD DSNAME=SYS1.IMAGELIB,DISP=OLD
 //SYSPRINT DD SYSOUT=A
 //SYSIN DD \
 FCB CH1=1,CH12=8ð,LPI=8
 NAME IJ
 /\

The control statements are discussed below:

� The SYSUT1 DD statement includes DISP=OLD to ensure that no other job
can modify the data set while this job is executing.

� CH1=1 specifies channel 1 code for line 1, allowing for positioning at line 1.

� CH12=80 specifies channel 12 code for line 80, allowing for positioning at line
80 and a unit exception indication at line 80 (the last printable line on the
page.)

� LPI=8 specifies that the entire form is to be at a vertical spacing of 8 lines per
inch. Because the SIZE parameter is omitted, the form length defaults to 11
inches. Because there are 10 inches of printable space in an 11-inch form, 80
lines are printed at 8 lines per inch.

� The name of the new FCB module is IJ; it is stored as a member of the
SYS1.IMAGELIB data set.

Example 2: Replace a 3800 Forms Control Buffer Module

3800 Model 1
In this example, the size and channel codes for a 5-1/2 inch form are specified, and
the module is added to the SYS1.IMAGELIB data set as a replacement for an
existing member. The new module is added to the end of the data set; the name in
the data set's directory is updated so that it points to the new module; the old
module can no longer be accessed through the data set's directory.

 //FCBMOD2 JOB ...
 //STEP1 EXEC PGM=IEBIMAGE
 //SYSUT1 DD DSNAME=SYS1.IMAGELIB,DISP=OLD
 //SYSPRINT DD SYSOUT=A
 //SYSIN DD \
 FCB CH1=(1,7,13,2ð),CH12=26,SIZE=55
 NAME S55(R)
 /\

The control statements are discussed below:

� The SYSUT1 DD statement includes DISP=OLD to ensure that no other job
can modify the data set while this job is executing.

� CH1=(1,7,13,20) specifies channel 1 code for printable line 1, line 7, line 13,
and line 20.

� CH12=26 specifies channel 12 code for printable line 26.

 IEBIMAGE (Create Printer Image) Program 181

 IEBIMAGE

� SIZE=55 specifies the length of the form as 55 tenths of an inch, or 5-1/2
inches.

� Because the LPI parameter is omitted, the vertical spacing defaults to 6 lines
per inch. Because there are 4-1/2 inches of printable lines in a 5-1/2 inch form,
there are 27 print lines on this form.

� The name of the FCB module is S55, and it replaces an existing FCB module
of the same name. The new FCB module is stored as a member of the
SYS1.IMAGELIB data set.

Example 3: Replace a 3800 Forms Control Buffer Module

3800 Model 1
In this example, the vertical spacing, channel codes, and size for a form are speci-
fied, and the module is added to the SYS1.IMAGELIB data set as a replacement
for an existing member. The new module is added to the end of the data set; the
name in the data set's directory is updated so that it points to the new module; the
old module can no longer be accessed through the data set's directory.

 //FCBMOD3 JOB ...
 //STEP1 EXEC PGM=IEBIMAGE
 //SYSUT1 DD DSNAME=SYS1.IMAGELIB,DISP=OLD
 //SYSPRINT DD SYSOUT=A
 //SYSIN DD \
 FCB CH1=1,CH2=4,CH5=11,SIZE=35,LPI=((6,2),(8,3),(6,4),(8,9))
 NAME HL(R)
 /\

The control statements are discussed below:

� The SYSUT1 DD statement includes DISP=OLD to ensure that no other job
can modify the data set while this job is executing.

� CH1=1 specifies channel 1 code for printable line 1.

� CH2=4 specifies channel 2 code for line 4.

� CH5=11 specifies channel 5 code for line 11.

� LPI=((6,2),(8,3),(6,4),(8,9)) specifies vertical spacing for the first 18 printable
lines in the form:

(6,2) specifies lines 1 through 2 are at a vertical spacing of 6 lines per inch,
and take up 2/6 inch.
(8,3) specifies lines 3 through 5 are at a vertical spacing of 8 lines per inch,
and take up 3/8 inch.
(6,4) specifies lines 6 through 9 are at a vertical spacing of 6 lines per inch,
and take up 4/6 inch.
(8,9) specifies lines 10 through 18 are at a vertical spacing of 8 lines per
inch, and take up 1-1/8 inch.

� SIZE=35 specifies the length of the form as 35 tenths of an inch, or 3-1/2
inches. Because there are 2-1/2 inches of printable space on a 3-1/2 inch form,
and because the LPI parameter specifies vertical spacing for 2-1/2 inches of
lines, the vertical spacing of all lines in the form is accounted for.

� The name of the FCB module is HL; it replaces an existing module of the same
name. The new FCB module is stored as a member of the SYS1.IMAGELIB
data set.

182 DFSMS/MVS V1R5 Utilities

 IEBIMAGE

Example 4: Build a New 3800 Forms Control Buffer Module

3800 Model 1
In this example, the vertical spacing, channel codes, and length of a form are spec-
ified, and the module is added to the SYS1.IMAGELIB data set as a new member.

 //FCBMOD4 JOB ...
 //STEP1 EXEC PGM=IEBIMAGE
 //SYSUT1 DD DSNAME=SYS1.IMAGELIB,DISP=OLD
 //SYSPRINT DD SYSOUT=A
 //SYSIN DD \
 FCB CH1=1,CH6=33,SIZE=7ð,LPI=((8,32),(12,2))
 NAME TGT
 /\

The control statements are discussed below:

� The SYSUT1 DD statement includes DISP=OLD to ensure that no other job
can modify the data set while this job is executing.

� CH1=1 specifies channel 1 code for printable line 1.

� CH6=33 specifies channel 6 code for line 33.

� LPI=((8,32),(12,2)) specifies that the first 32 printable lines of the form are to be
at a vertical spacing of 8 lines per inch, and the next 2 printable lines are to be
at a vertical spacing of 12 lines per inch.

� SIZE=70 specifies that the length of the form is 70 tenths of an inch, or 7
inches. Because there are 6 inches of printable lines in a 7-inch form and the
LPI parameter specifies 32 lines at 8 lines per inch, or 4 inches, and 2 lines at
12 lines per inch, or 1/6 inch, the vertical spacing for the remaining 1-5/6
inches defaults to 6 lines per inch.

Therefore, the form consists of lines 1 through 32 at 8 lines per inch, lines 33
through 34 at 12 lines per inch, and lines 35 through 45 at 6 lines per inch, with
channel codes at line 1 and line 33.

� The name of the new FCB module is TGT; it is stored as a member of the
SYS1.IMAGELIB data set.

Example 5: Replace the 3800 Forms Control Buffer Module STD3

3800 Model 1
In this example, an FCB module is defined that uses ISO paper sizes, replacing the
IBM-supplied module named STD3. This must be done before the dump-formatting
routines that print high-density dumps can print them at 8 lines per inch on that
printer.

 //FCBMOD5 JOB ...
 //STEP1 EXEC PGM=IEBIMAGE
 //SYSUT1 DD DSNAME=SYS1.IMAGELIB,DISP=OLD
 //SYSPRINT DD SYSOUT=A
 //SYSIN DD \
 FCB CH1=1,CH12=88,LPI=(8,88),SIZE=12ð
 NAME STD3(R)
 /\

The control statements are discussed below:

 IEBIMAGE (Create Printer Image) Program 183

 IEBIMAGE

� The SYSUT1 DD statement includes DISP=OLD to ensure that no other job
can modify the data set while this job is executing.

� CH1=1 specifies channel 1 code for printable line 1; CH12=88 specifies
channel 12 code for line 88.

� LPI=(8,88) specifies that all 88 printable lines of the form are to be at a vertical
spacing of 8 lines per inch.

� SIZE=120 specifies that the length of the form is 120 tenths of an inch, or 12
inches, which is the longest ISO paper size.

� The name of the new FCB module is STD3; it is to replace the existing module
of that same name on SYS1.IMAGELIB.

Example 6: Build a New 3800 Forms Control Buffer Module for
Additional ISO Paper Sizes

3800 Model 3
In this example, an FCB module is defined that uses ISO paper sizes and has the
ISO Paper Sizes Additional Feature installed.

 //FCBMOD JOB ... 72
 //STEP1 EXEC PGM=IEBIMAGE

//SYSUT1 DD DSNAME=SYS1.IMAGELIB,DISP=OLD
 //SYSPRINT DD SYSOUT=A
 //SYSIN DD \
 FCB CH1=1,CH12=75,SIZE=85,
 LPI=((1ð,35),(12,4),(1ð,35),(6,1) X
 NAME ARU
 /\

The control statements are discussed below:

� The SYSUT1 DD statement includes DISP=OLD to ensure that no other job
can modify the data set while this job is executing.

� CH1=1 specifies channel 1 code for line 1, allowing for positioning at line 1.

� Ch12=75 specifies channel 12 code for line 75, allowing for positioning at line
75 and a unit exception indication at 75 (the last printable line on the page.)

� LPI=((10,35),(12,4),(10,35),(6,1)) specifies vertical spacing for the entire print-
able area on the form. The last printable line on the form must have vertical
spacing of 6 lines per inch. The sum of the lines allocated must be a multiple of
1/2.

EXAMPLE

 (1ð,35)=3 1/2" (12,4)=2/6" (6,1)=1/6"

and 3 1/2 + 2/6 + 3 1/2 + 1/6 = 7 1/2 which is a multiple of 1/2

� SIZE=85 specifies the length of the form as 85 tenths of an inch, or 8-1/2
inches, although the printable area is 7-1/2 inches.

� The name of the new FCB module is ARU; it is stored as a member of the
SYS1.IMAGELIB data set.

184 DFSMS/MVS V1R5 Utilities

 IEBIMAGE

Example 7: Build a 4248 Forms Control Buffer Module
In this example, a new 4248 default FCB module is built using an existing FCB
module as a model. The new module, NEW1, is added to SYS1.IMAGELIB as a
new member. The existing module, OLD1, remains unchanged. OLD1 may be a
4248 FCB called FCB4OLD1, or it may be a 3211 FCB called FCB2OLD1. (If both
modules existed, FCB4OLD1 would be used.)

 //FCBMOD7 JOB ...
 //STEP1 EXEC PGM=IEBIMAGE
 //SYSUT1 DD DSNAME=SYS1.IMAGELIB,DISP=OLD
 //SYSPRINT DD SYSOUT=A
 //SYSIN DD \
 OPTION DEVICE=4248
 INCLUDE OLD1
 FCB COPYP=67,PSPEED=M,DEFAULT=YES
 NAME NEW1
 /\

The control statements are discussed below:

� The SYSUT1 DD statement includes DISP=OLD to ensure that no other job
can modify the data set while this job is executing.

� DEVICE=4248 on the OPTION statement specifies that this module is to be
created for the 4248 printer.

� The INCLUDE statement specifies that a copy of the existing module OLD1 is
to be used as a basis for the new module, NEW1.

� COPYP=67 indicates that the horizontal copy feature should be activated, and
that horizontal copies should begin printing in the 67th print position from the
left margin. This setting overrides any COPYP value previously set in module
OLD1; it applies to module NEW1, but does not change the value set in OLD1.

Note that the value 67 divides a 132-hammer printer into two equal copy areas
for two equally-sized horizontal copies. With COPYP=67, a maximum of 66
bytes can be sent to the printer.

� PSPEED=M indicates that the printer speed should be set to medium (3000
LPM). This setting overrides any PSPEED value previously set in module
OLD1; it applies to module NEW1, but does not change the value set in OLD1.

� DEFAULT=YES indicates that this module, NEW1, should become a default
FCB module for this installation.

� Because these parameters are not specified, the values of LINES, SIZE, LPI,
and CHx default to the values which already exist in module OLD1.

� The NAME statement indicates that this module should be called NEW1.

Example 8: Build a New Copy Modification Module

3800 Model 1
In this example, a copy modification module that contains four modification seg-
ments is built. The module is added to the SYS1.IMAGELIB data set as a new
member.

 IEBIMAGE (Create Printer Image) Program 185

 IEBIMAGE

 72
 //COPMOD1 JOB ...
 //STEP1 EXEC PGM=IEBIMAGE
 //SYSUT1 DD DSNAME=SYS1.IMAGELIB,DISP=OLD
 //SYSPRINT DD SYSOUT=A
 //SYSIN DD \
 COPY1 COPYMOD COPIES=(1,1),LINES=(1,1),POS=5ð, X
 TEXT=(C,'CONTROLLER'S COPY')
COPY2A COPYMOD COPIES=(2,1),LINES=(1,1),POS=5ð, X

TEXT=(C,'SHIPPING MANAGER'S COPY')
COPY2B COPYMOD COPIES=(2,1),LINES=(34,3),POS=75, X

 TEXT=(1ðC,' ')
COPYALL COPYMOD COPIES=(1,4),LINES=(58,1),POS=35, X

 TEXT=((C,'\\\'),(C,'CONFIDENTIAL'),(3X,'5C'))
 NAME RTO1
 /\

The control statements are discussed below:

� The SYSUT1 DD statement includes DISP=OLD to ensure that no other job
can modify the data set while this job is executing.

� The COPY1 COPYMOD statement specifies text that applies to each page of
the first copy of the output data set:

LINES=(1,1) and POS=50 specify that the text is to be on the first printable line
of each page, starting at the 50th print position from the left.

The TEXT parameter identifies each page of the copy as being the “Controller's
Copy.”

� The COPY2A COPYMOD statement specifies text that applies to each page of
the second copy of the output data set. The text is to be on the first line of
each page, at the 50th print position from the left, with each page of the copy
being the “Shipping Manager's Copy.”

� The COPY2B COPYMOD statement specifies that part of the second copy's
output data set text is to be blanked out, so that the first, third, and subsequent
copies contain information that is not printed on the second copy. The blank
area is to be on lines 34, 35, and 36, beginning at the 75th print position from
the left. The text on lines 34, 35, and 36, between print positions 75 and 84, is
to be blank (that is, the character specified between the TEXT parameter's
single quotation marks is a blank).

� The COPYALL COPYMOD statement specifies text that applies to the first four
copies of the output data set. This example assumes that no more than four
copies are printed each time the job that produces the output data set is proc-
essed. The text is to be on the 58th line on each page, at the 35th print posi-
tion from the left. The legend “***CONFIDENTIAL***” is to be on each page of
the copy. Note that the text can be coded in both character and hexadecimal
format.

� The name of the copy modification module is RTO1; it is stored as a member
of the SYS1.IMAGELIB data set.

186 DFSMS/MVS V1R5 Utilities

 IEBIMAGE

Example 9: Build a New Copy Modification Module from an Existing
Copy

3800 Model 3
In this example, a copy of an existing copy modification module, RTO1, is used as
the basis for a new copy modification module. The new module is added to the
SYS1.IMAGELIB data set as a new member. The existing module, RTO1, remains
unchanged and available for use.

 72
 //COPMOD2 JOB ...
 //STEP1 EXEC PGM=IEBIMAGE
 //SYSUT1 DD DSNAME=SYS1.IMAGELIB,DISP=OLD
 //SYSPRINT DD SYSOUT=A
 //SYSIN DD \
 INCLUDE RTO1,DELSEG=1
 OPTION OVERRUN=8,DEVICE=38ððM3
 COPYMOD COPIES=(2,3),LINES=(52,6),POS=1ðð, X
 TEXT=(X,'4ð4ð4ð4ð4ð4ð4ð4ð5C5C')
 NAME AP
 /\

The control statements are discussed below:

� The SYSUT1 DD statement includes DISP=OLD to ensure that no other job
can modify the data set while this job is executing.

� The INCLUDE statement specifies that a copy of the copy modification module
named RTO1 is used as a basis for the new module, and that the first modifi-
cation segment of RTO1 is to be deleted from the copy.

� OVERRUN=8 in the OPTION statement specifies that the IEBIMAGE program
is to print a warning message if the copy modification could cause a line
overrun condition when printing at 6 and 8 lines per inch. The program is also
to suppress any warning messages that apply to printing at 10 and 12 lines per
inch. DEVICE=3800M3 in the OPTION statement specifies 3800 Model 3 com-
patibility mode processing.

� The COPYMOD statement specifies text that applies to each page of the
second, third, and fourth copies of the output data set:

LINES=(52,6) and POS=100 specify that the text is to be on the 52nd line and
repeated for the 53rd through 57th lines of each page, starting at the 100th
print position from the left.

The TEXT statement specifies the text in hexadecimal form: eight blanks fol-
lowed by two asterisks (in this example, the assumption is made that X'40'
prints as a blank and that X'5C' prints as an asterisk; in actual practice, the
character arrangement table used with the copy modification module might
translate X'40' and X'5C' to other printable characters).

� The name of the new copy modification module is AP; it is stored as a member
of the SYS1.IMAGELIB data set.

 IEBIMAGE (Create Printer Image) Program 187

 IEBIMAGE

Example 10: Add a New Character to a Character Arrangement Table
Module

3800 Model 3
In this example, an IBM-supplied character arrangement table module is modified to
include another character, and then added to the SYS1.IMAGELIB data set as a
replacement for the IBM-supplied module.

 //CHARMOD1 JOB ...
 //STEP1 EXEC PGM=IEBIMAGE
 //SYSUT1 DD DSNAME=SYS1.IMAGELIB,DISP=OLD
 //SYSPRINT DD SYSOUT=A
 //SYSIN DD \
 INCLUDE GF1ð
 OPTION DEVICE=38ððM3
 TABLE LOC=((2A,2A),(6A,2A),(AA,2A),(EA,2A))
 NAME GF1ð(R)
 /\

The control statements are discussed below:

� The SYSUT1 DD statement includes DISP=OLD to ensure that no other job
can modify the data set while this job is executing.

� The INCLUDE statement specifies that a copy of the character arrangement
table named GF10 is to be used as a basis for the new module.

� The OPTION statement with the DEVICE parameter specifies 3800 Model 3
compatibility mode processing.

� The TABLE statement specifies updated information for four translation table
entries: X'2A', X'6A', X'AA', and X'EA'. (These four locations are unused in
the IBM-supplied GF10 table.) Each of the four translation table entries is to
point to the '2A' (43rd character) position in the first WCGM, which contains
the scan pattern for a lozenge.

� The name of the character arrangement table is GF10, and it is stored as a
new module in the SYS1.IMAGELIB data set. The data set's directory is
updated so that the name GF10 points to the new module; the old GF10
module can no longer be accessed through the data set's directory.

Example 11: Build a New Character Arrangement Table Module from
an Existing Copy

3800 Model 3
In this example, an existing character arrangement table module is copied and
used as a basis for a new module. The new character arrangement table is iden-
tical to the old one, except that it uses the Gothic 15-pitch character set instead of
Gothic 10-pitch.

188 DFSMS/MVS V1R5 Utilities

 IEBIMAGE

 //CHARMOD2 JOB ...
 //STEP1 EXEC PGM=IEBIMAGE
 //SYSUT1 DD DSNAME=SYS1.IMAGELIB,DISP=OLD
 //SYSPRINT DD SYSOUT=A
 //SYSIN DD \
 INCLUDE A11
 OPTION DEVICE=38ððM3
 TABLE CGMID=87
 NAME A115
 /\

The control statements are discussed below:

� The SYSUT1 DD statement includes DISP=OLD to ensure that no other job
can modify the data set while this job is executing.

� The INCLUDE statement specifies that a copy of the character arrangement
table named A11 is to be used as a basis for the new module. The A11 char-
acter arrangement table translates 8-bit data codes to printable characters in
the Gothic 10-pitch character set.

� The OPTION statement with the DEVICE parameter specifies 3800 Model 3
compatibility mode processing.

� The TABLE statement specifies a new character set identifier, X'87', which is
the identifier for the Gothic 15-pitch character set. No other changes are made
to the character arrangement table. The new table calls for characters in the
Gothic 15-pitch character set.

� The name of the new character arrangement table is A115; it is stored as a
member of the SYS1.IMAGELIB data set.

Example 12: Build Graphic Characters in a Character Arrangement
Table Module

3800 Model 1
In this example, an existing character arrangement table module is copied and
used as the basis for a new module that will include user-designed characters of a
graphic character modification module. The new module is then added to the
SYS1.IMAGELIB data set.

 //CHARMOD3 JOB ...
 //STEP1 EXEC PGM=IEBIMAGE
 //SYSUT1 DD DSNAME=SYS1.IMAGELIB,DISP=OLD
 //SYSPRINT DD SYSOUT=A
 //SYSIN DD \
 INCLUDE ONB
 TABLE GCMLIST=ONB1,LOC=((6F,2F,1),(7C,3C,1),(6A,2A,ð))
 NAME ONBZ
 /\

The control statements are discussed below:

� The SYSUT1 DD statement includes DISP=OLD to ensure that no other job
can modify the data set while this job is executing.

� The INCLUDE statement specifies that a copy of the character arrangement
table named ONB is to be used as a basis for the new module. ONB refers to
two WCGMs.

 IEBIMAGE (Create Printer Image) Program 189

 IEBIMAGE

� The TABLE statement identifies a graphic character modification module and
stipulates the translation table entries for each of its segments:

GCMLIST=ONB1 identifies the graphic character modification module named
ONB1. The LOC parameter specifies the translate table entry location, char-
acter position, and WCGM number for each segment of the module:

The first segment corresponds to the 8-bit data code X'6F'. The segments'
scan pattern is to be loaded at character position X'2F' (that is, the 48th
character position) in the second WCGM.
The second segment corresponds to the 8-bit data code X'7C'. The seg-
ment's scan pattern is to be loaded at character position X'3C' (that is, the
61st character position) in the second WCGM.
The third segment corresponds to the 8-bit data code X'6A'. The seg-
ment's scan pattern is to be loaded at character position X'2A' (that is, the
43rd character position) in the first WCGM.
The name of the new character arrangement table is ONBZ; it is stored as
a new module in the SYS1.IMAGELIB data set.

Example 13: Delete Graphic References From a Character
Arrangement Table Module

3800 Model 3
In this example, an existing character arrangement table module is copied and
used as a basis for a new one. The new character arrangement table deletes refer-
ences to all graphic character modification modules and resets the translate table
entries that were used to point to character positions for the segments of a graphic
character modification module.

 //CHARMOD4 JOB ...
 //STEP1 EXEC PGM=IEBIMAGE
 //SYSUT1 DD DSNAME=SYS1.IMAGELIB,DISP=OLD
 //SYSPRINT DD SYSOUT=A
 //SYSIN DD \
 INCLUDE ZYL
 OPTION DEVICE=38ððM3
 TABLE GCMLIST=DELETE,LOC=((6A),(6B))
 NAME ZYLA
 /\

The control statements are discussed below:

� The SYSUT1 DD statement includes DISP=OLD to ensure that no other job
can modify the data set while this job is executing.

� The INCLUDE statement specifies that a copy of the character arrangement
table named ZYL is to be used as a basis for the new module.

� The OPTION statement with the DEVICE parameter specifies 3800 Model 3
compatibility mode processing.

� The TABLE statement deletes references to graphic character modification
modules and resets two translation table entries:

GCMLIST=DELETE specifies that all names of graphic character modification
modules included with the module when the ZYL character arrangement table
was copied are to be reset to blanks (X'40').

190 DFSMS/MVS V1R5 Utilities

 IEBIMAGE

The LOC parameter identifies two locations in the translation table, X'6A' and
X'6B', that are to be set to X'FF' (the default value when no character posi-
tion or WCGM values are specified).

� The name of the new character arrangement table is ZYLA; it is stored as a
member of the SYS1.IMAGELIB data set.

Example 14: List the World Trade National Use Graphics Graphic
Character Modification Module

3800 Model 1
In this example, each segment of the IBM-supplied graphic character modification
module containing the World Trade National Use Graphics is printed. Each
segment is unique, although the scan patterns for some segments are identical to
other segment's scan patterns with only the 8-bit data code being different.

 //GRAFMOD1 JOB ...
 //STEP1 EXEC PGM=IEBIMAGE
 //SYSUT1 DD DSNAME=SYS1.IMAGELIB,DISP=SHR
 //SYSPRINT DD SYSOUT=A
 //SYSIN DD \
 GRAPHIC
 NAME \
 /\

The control statements are discussed below:

� DISP=SHR is coded because the library is not being updated.

� The World Trade National Use Graphics graphic character modification module
is identified with the pseudonym of “*.” The scan pattern of each of the charac-
ters in the module is printed.

Example 15: Build a Graphic Character Modification Module from the
Character Modification Module World Trade GRAFMOD

3800 Model 3
In this example, a graphic character modification module is built. Its characters are
segments copied from the World Trade National Use Graphics graphic character
modification module. (See the IBM 3800 Printing Subsystem Programmer’s Guide
for the EBCDIC assignments for the characters.) The new module is stored in the
SYS1.IMAGELIB system data set.

 //GRAFMOD2 JOB ...
 //STEP1 EXEC PGM=IEBIMAGE
 //SYSUT1 DD DSNAME=SYS1.IMAGELIB,DISP=OLD
 //SYSPRINT DD SYSOUT=A
 //SYSIN DD \
 OPTION DEVICE=38ððM3
 GRAPHIC REF=((24),(25),(26),(27),(28),(31),(33),(35),(38),(4ð))
 NAME CSTW
 /\

The control statements are discussed below:

� The SYSUT1 DD statement includes DISP=OLD to ensure that no other job
can modify the data set while this job is executing.

 IEBIMAGE (Create Printer Image) Program 191

 IEBIMAGE

� DEVICE=3800M3 in the OPTION statement specifies 3800 Model 3 compat-
ibility mode module format.

� By not specifying the GCM keyword, the GRAPHIC statement identifies the
World Trade National Use Graphics graphic character modification module. Ten
of its segments are to be copied and used with the new module.

� The name of the graphic character modification module is CSTW; it is stored as
a new module in the SYS1.IMAGELIB data set.

Example 16: Build a New Graphic Character Modification Module and
Modify a Character Arrangement Table to Use It

3800 Model 3
In this example, a graphic character modification module is built. The module con-
tains one user-designed character, a reverse 'E', whose 8-bit data code is desig-
nated as X'E0' and whose pitch is 10. An existing character arrangement table is
then modified to include the reverse E.

 //GRAFMOD3 JOB ...
 //STEP1 EXEC PGM=IEBIMAGE
 //SYSUT1 DD DSNAME=SYS1.IMAGELIB,DISP=OLD
 //SYSPRINT DD SYSOUT=A
 //SYSIN DD \
 OPTION DEVICE=38ððM3
 GRAPHIC ASSIGN=(Eð,1ð)
 XXXXXXXXXXXXXXX SEQ=1ð
 XXXXXXXXXXXXXXX SEQ=11
 XXXXXXXXXXXXXXX SEQ=12
 XXXX SEQ=13
 XXXX SEQ=14
 XXXX SEQ=15
 XXXX SEQ=16
 XXXX SEQ=17
 XXXX SEQ=18
 XXXX SEQ=19
 XXXXXXXXXXXXX SEQ=2ð
 XXXXXXXXXXXXX SEQ=21
 XXXXXXXXXXXXX SEQ=22
 XXXX SEQ=23
 XXXX SEQ=24
 XXXX SEQ=25
 XXXX SEQ=26
 XXXX SEQ=27
 XXXX SEQ=28
 XXXX SEQ=29
 XXXXXXXXXXXXXXX SEQ=3ð
 XXXXXXXXXXXXXXX SEQ=31
 XXXXXXXXXXXXXXX SEQ=32
 NAME BODE
 INCLUDE GS1ð
 OPTION DEVICE=38ððM3
 TABLE CGMID=(83,FF),GCMLIST=BODE,LOC=(Eð,ð3,1)
 NAME RE1ð
 /\

The control statements are discussed below:

192 DFSMS/MVS V1R5 Utilities

 IEBIMAGE

� The SYSUT1 DD statement includes DISP=OLD to ensure that no other job
can modify the data set while this job is executing.

� DEVICE=3800M3 in the OPTION statement preceding the GRAPHIC statement
specifies 3800 Model 3 compatibility mode processing.

� The GRAPHIC statement's ASSIGN parameter establishes the 8-bit data code,
X'E0', and the width, 10-pitch, for the user-designed character. The data
statements that follow the GRAPHIC statement describe the character's scan
pattern.

� The name of the graphic character modification module is BODE, and it is
stored as a new module in the SYS1.IMAGELIB data set.

� The INCLUDE statement specifies that a copy of the GS10 character arrange-
ment table is to be used as the basis for the new table.

� The TABLE statement specifies the addition of the reverse E to that copy of the
GS10 table.

CGMID=(83,FF) specifies the character set identifier X'83' for the Gothic-10
set (which is the set already used by the GS10 table) and specifies X'FF' as a
character set identifier to allow accessing of the second WCGM without loading
it.

GCMLIST=BODE identifies the graphic character modification module con-
taining the reverse E for inclusion in the table.

LOC=(E0,03,1) specifies that the reverse E, which has been assigned the 8-bit
data code X'E0', is to be loaded into position X'03' in the second WCGM.
Because this second WCGM is otherwise unused, any position in it could have
been used for the reverse E.

� The new character arrangement table is named RE10; it is stored as a new
module in the SYS1.IMAGELIB data set.

Example 17: Build a Graphic Character Modification Module from
Multiple Sources

3800 Model 1
In this example, a graphic character modification module is created. Its contents
come from three different sources: nine segments are copied from an existing
module with the INCLUDE statement; the GRAPHIC statement is used to select
another segment to be copied; the GRAPHIC statement is also used to establish
characteristics for a user-designed character. The new graphic character modifica-
tion module, when built, is added to the SYS1.IMAGELIB.

 IEBIMAGE (Create Printer Image) Program 193

 IEBIMAGE

 //GRAFMOD4 JOB ...
 //STEP1 EXEC PGM=IEBIMAGE
 //SYSUT1 DD DSNAME=SYS1.IMAGELIB,DISP=OLD
 //SYSPRINT DD SYSOUT=A
 //SYSIN DD \
 INCLUDE CSTW,DELSEG=3
 GRAPHIC REF=(1,6A),GCM=BODE,ASSIGN=9A
 \\\\\\\\ SEQ=ð6
 \\\\\\\\\\ SEQ=ð7
 \\\\ \\\\ SEQ=ð8
 \\\ \\\ SEQ=ð9
 \\\ \\\\ SEQ=1ð
 \\\ \\\\\\ SEQ=11
 \\\ \\\\\\ SEQ=12
 \\\ \\\\ SEQ=13
 \\\ \\\\ SEQ=14
 \\\ \\\ SEQ=15
 \\\ \\\ SEQ=16

\\\ \\\\ \\\\ SEQ=17
 \\\ \\\\\\\ SEQ=18
 \\\ \\\\\ SEQ=19
 NAME JPCK
 /\

The control statements are discussed below:

� The SYSUT1 DD statement includes DISP=OLD to ensure that no other job
can modify the data set while this job is executing.

� The INCLUDE statement specifies that a copy of the graphic character modifi-
cation module named CSTW is to be included with the new module. All seg-
ments of CSTW, except the third segment (as a result of DELSEG=3), are to
be copied into the new module and become the module's first through ninth
modification segments.

� The GRAPHIC statement specifies the module's tenth and eleventh segments:

REF=(1,6A) and GCM=BODE specify that the 10th segment of the new module
is to be obtained by copying the first segment from the graphic character mod-
ification module named BODE. In addition, the segment's 8-bit data code is to
be changed so that its character is identified with the code X'6A'.

ASSIGN=9A specifies that the new module's 11th segment is a user-designed
character whose 8-bit data code is X'9A' and whose width is 10-pitch (the
default when no pitch value is specified). The GRAPHIC statement is followed
by data statements that specify the character's scan pattern.

� The name of the graphic character modification module is JPCK, it is stored as
a new module in the SYS1.IMAGELIB data set.

Example 18: Define and Use a Character in a Graphic Character
Modification Module

194 DFSMS/MVS V1R5 Utilities

 IEBIMAGE

3800 Model 3
In this example, a graphic character modification module containing a user-
designed character is built. Next, a format character arrangement table is modified
to include that new character. Then, a copy modification module is created to print
the new character enclosed in a box of format characters. Finally, the result is
tested to allow comparison of the output with the input.

 //CHAR JOB ...
 //BUILD EXEC PGM=IEBIMAGE
 //SYSUT1 DD DSNAME=SYS1.IMAGELIB,DISP=OLD
 //SYSPRINT DD SYSOUT=A
 //SYSIN DD \
 OPTION DEVICE=38ððM3
 STEP1 GRAPHIC ASSIGN=5C
 XXX XXX SEQ=ð1
 XXX XXX SEQ=ð2
 XXX XXX SEQ=ð3
 XXX XXX SEQ=ð4
 XXXXXXXXXXXXXXXXXXXXXXX SEQ=ð5
 XXXXXXXXXXXXXXXXXXXXXXX SEQ=ð6
 XXXXXXXXXXXXXXXXXXXXXXX SEQ=ð7
 XXX XXX SEQ=ð8
 XXX XXX SEQ=ð9
 XXX XXX SEQ=1ð
 XXX XXX SEQ=11
 SEQ=12
 SEQ=13
 SEQ=14
 XXXXXXXXXXXXXXXXXXXXXXX SEQ=15
 XXXXXXXXXXXXXXXXXXXXXXX SEQ=16
 XXXXXXXXXXXXXXXXXXXXXXX SEQ=17
XXX XXX XXX SEQ=18
XXX XXX XXX SEQ=19
XXX XXX XXX SEQ=2ð
XXX XXX XXX SEQ=21
XXXX XXXXX XXXX SEQ=22

 XXXX XXXXXXX XXXX SEQ=23
 XXXXXXXXXXXXXXXXXXX SEQ=24
 XXXXX XXXXXX SEQ=25
 SEQ=26
 SEQ=27
 SEQ=28
 XXXXXXXXXXXXXXXXXXXXXXX SEQ=29
 XXXXXXXXXXXXXXXXXXXXXXX SEQ=3ð
 XXXXXXXXXXXXXXXXXXXXXXX SEQ=31
 XXXXXXX SEQ=32
 XXXXXXXXXXXXXXXXXX SEQ=33
 XXXXXXXXXXXXXXXX SEQ=34
 XXXXXXXXXXXXXXXX SEQ=35
 XXXXXXXXXXXXXXXXXX SEQ=36
 XXXXXXX SEQ=37
 XXXXXXXXXXXXXXXXXXXXXXX SEQ=38
 XXXXXXXXXXXXXXXXXXXXXXX SEQ=39
 XXXXXXXXXXXXXXXXXXXXXXX SEQ=4ð
 NAME AIBM

 IEBIMAGE (Create Printer Image) Program 195

 IEBIMAGE

 STEP2 OPTION DEVICE=38ððM3
 INCLUDE FM1ð
 TABLE GCMLIST=AIBM,LOC=(5C,2C)
 NAME BIBM
 STEP3 OPTION DEVICE=38ððM3
 COPYMOD COPIES=1,LINES=58,POS=5,TEXT=(C,'W6X')
 COPYMOD COPIES=1,LINES=59,POS=5,TEXT=(C,'7\7')
 COPYMOD COPIES=1,LINES=6ð,POS=5,TEXT=(X,'E9F6E8')
 NAME CIBM
 /\
 //TEST EXEC PGM=IEBIMAGE
 //SYSUT1 DD DSNAME=SYS1.IMAGELIB,DISP=OLD
 //SYSPRINT DD SYSOUT=A,CHARS=(GF1ð,BIBM),
 // MODIFY=(CIBM,1)
 //SYSIN DD \
 OPTION DEVICE=38ððM3
 GRAPHIC
 NAME AIBM
 /\

The control statements are discussed below:

� The SYSUT1 DD statement includes DISP=OLD to ensure that no other job
can modify the data set while this job is executing.

� The GRAPHIC statement's ASSIGN parameter specifies that the 8-bit data
code for the user-designed character is X'5C' and the width is 10-pitch (the
default when no pitch is specified). The GRAPHIC statement is followed by
data statements that specify the character's scan pattern for vertical line
spacing of 6 lines per inch.

� The name of the graphic character modification module is AIBM, and it is
stored as a new module in SYS1.IMAGELIB.

� At STEP2, the INCLUDE statement specifies that a copy of the FM10 character
arrangement table is to be used as a basis for the new module.

� The TABLE statement identifies the graphic character modification module
named AIBM, created in the previous step. The TABLE statement's LOC
parameter specifies the translation table entry location (the character's 8-bit
data code) of X'5C' and the position (X'2C') where that character is to be
loaded into the WCGM.

� The name of the new character arrangement table, which is added to
SYS1.IMAGELIB, is BIBM.

� At STEP3, the three COPYMOD statements specify text that is to be placed on
lines 58, 59, and 60 of the first copy of the output data set, starting at print
position 5 on each line. When used with the BIBM character arrangement table,
the characters W, 6, and X print as a top left corner, horizontal line segment,
and top right corner, all in line weight 3. The characters 7, *, and 7 print as a
weight-3 vertical line segment on both sides of the user-designed character
built at STEP1 (the asterisk has the EBCDIC assignment 5C, which addresses
that character). The hexadecimal E9, F6, and E8 complete the line-weight-3
Format box around the character.

� The name of the copy modification module is CIBM; it is stored as a new
module on SYS1.IMAGELIB.

196 DFSMS/MVS V1R5 Utilities

 IEBIMAGE

� At TEST, the EXEC statement calls for another execution of the IEBIMAGE
program to test the modules just created. On the SYSPRINT DD statement the
BIBM character arrangement table is the second of two specified, and the
CIBM copy modification module is specified with a table reference character of
1, to use that BIBM table.

� The GRAPHIC statement with no operand specified calls for printing of the
module, AIBM, specified with the NAME statement that follows it. Each page of
the output listing for this IEBIMAGE run has a small image of the modification
printed in the lower left corner.

� The OPTION statement with the DEVICE parameter at STEP1, STEP2, and
STEP3 specifies 3800 Model 3 compatibility mode module format and proc-
essing considerations.

Example 19: List a Library Character Set Module

3800 Model 1
In this example, each segment of a library character set is printed. The scan
pattern of each of the characters in the module is printed.

 //LIBMOD1 JOB ...
 //STEP1 EXEC PGM=IEBIMAGE
 //SYSUT1 DD DSNAME=SYS1.IMAGELIB,DISP=SHR
 //SYSPRINT DD SYSOUT=A
 //SYSIN DD \
 CHARSET
 NAME 83
 /\

The control statements are discussed below:

� NAME specifies the name of the library character set (83).

Example 20: Build a Library Character Set Module

3800 Model 3
In this example, a library character set module is built. Its characters are segments
copied from the World Trade National Use Graphics graphic character modification
module. For the listing of all the segments of that module, see IBM 3800 Printing
Subsystem Programmer’s Guide. The EBCDIC assignments for the characters are
replaced by WCGM-location codes. The new module is stored in the
SYS1.IMAGELIB system data set.

 72
 //LIBMOD2 JOB ...
 //STEP1 EXEC PGM=IEBIMAGE
 //SYSUT1 DD DSNAME=SYS1.IMAGELIB,DISP=OLD
 //SYSPRINT DD SYSOUT=A
 //SYSIN DD \
 OPTION DEVICE=38ððM3
 CHARSET REF=((24,ð1),(25,ð2),(26,ð3),(27,ð4),(28,ð5), X
 (31,ð6),(33,ð7),(35,ð8),(38,ð9),(4ð,ðA))
 NAME 73
 /\

The control statements are discussed below:

 IEBIMAGE (Create Printer Image) Program 197

 IEBIMAGE

� The SYSUT1 DD statement includes DISP=OLD to ensure that no other job
can modify the data set while this job is executing.

� DEVICE=3800M3 in the OPTION statement specifies 3800 Model 3 compat-
ibility mode module format.

� By not specifying the GCM keyword or a library character set ID, the CHARSET
statement identifies the World Trade National Use Graphics graphic character
modification module. Ten of its segments are to be copied and used with the
new module. For example, the 24th segment is to be copied and assigned the
WCGM location 01. See the REF parameter (24,01).

� The name of the library character set module is 73, and it is stored as a new
module in the SYS1.IMAGELIB data set.

Example 21: Build a Library Character Set Module and Modify a
Character Arrangement Table to Use It

3800 Model 3
In this example, a library character set module is built. The module contains one
user-designed character, a reverse 'E', whose 6-bit WCGM-location code is desig-
nated as X'03', and whose pitch is 10. An existing character arrangement table is
then modified to include the reverse E.

198 DFSMS/MVS V1R5 Utilities

 IEBIMAGE

 //LIBMOD3 JOB ...
 //STEP1 EXEC PGM=IEBIMAGE
 //SYSUT1 DD DSNAME=SYS1.IMAGELIB,DISP=OLD
 //SYSPRINT DD SYSOUT=A
 //SYSIN DD \
 OPTION DEVICE=38ððM3
 CHARSET ASSIGN=(ð3,1ð)
 XXXXXXXXXXXXXXX SEQ=1ð
 XXXXXXXXXXXXXXX SEQ=11
 XXXXXXXXXXXXXXX SEQ=12
 XXXX SEQ=13
 XXXX SEQ=14
 XXXX SEQ=15
 XXXX SEQ=16
 XXXX SEQ=17
 XXXX SEQ=18
 XXXX SEQ=19
 XXXXXXXXXXXXX SEQ=2ð
 XXXXXXXXXXXXX SEQ=21
 XXXXXXXXXXXXX SEQ=22
 XXXX SEQ=23
 XXXX SEQ=24
 XXXX SEQ=25
 XXXX SEQ=26
 XXXX SEQ=27
 XXXX SEQ=28
 XXXX SEQ=29
 XXXXXXXXXXXXXXX SEQ=3ð
 XXXXXXXXXXXXXXX SEQ=31
 XXXXXXXXXXXXXXX SEQ=32
 NAME 73
 INCLUDE GS1ð
 OPTION DEVICE=38ððM3
 TABLE CGMID=(83,73),LOC=(Eð,ð3,1)
 NAME RE1ð
 /\

The control statements are discussed below:

� The SYSUT1 DD statement includes DISP=OLD to ensure that no other job
can modify the data set while this job is executing.

� DEVICE=3800M3 in the OPTION statement specifies 3800 Model 3 compat-
ibility mode module format and processing considerations.

� The CHARSET statement's ASSIGN parameter establishes the 6-bit
WCGM-location code, X'03', and the width, 10-pitch, for the user-designed
character. The data statements that follow the CHARSET statement describe
the character's scan pattern.

� The name of the library character set module is 73, and it is stored as a new
module in the SYS1.IMAGELIB data set.

� The INCLUDE statement specifies that a copy of the GS10 character arrange-
ment table is to be used as the basis for the new table.

� The TABLE statement specifies the addition of the library character set con-
taining the reverse E to that copy of the GS10 table.

 IEBIMAGE (Create Printer Image) Program 199

 IEBIMAGE

CGMID=(83,73) specifies the character set identifier X'83' for the Gothic-10
set (which is the set already used by the GS10 table) and specifies X'73' as a
character set identifier to allow loading of the second WCGM with the library
character set 73.

LOC=(E0,03,1) specifies that the reverse E, which has been assigned the
WCGM location 03 in the second WCGM, is to be referenced by the EBCDIC
code X'E0'.

� The new character arrangement table is named RE10; it is stored as a new
module in the SYS1.IMAGELIB data set.

Example 22: Build a Library Character Set Module from Multiple
Sources

3800 Model 1
In this example, a library character set module is created. Its contents come from
three different sources: 62 segments are copied from an existing module with the
INCLUDE statement; the CHARSET statement is used to select another segment to
be copied; a second CHARSET statement is used to establish characteristics for a
user-designed character. The new library character set module, when built, is
added to the SYS1.IMAGELIB.

 //LIBMOD4 JOB ...
 //STEP1 EXEC PGM=IEBIMAGE
 //SYSUT1 DD DSNAME=SYS1.IMAGELIB,DISP=OLD
 //SYSPRINT DD SYSOUT=A
 //SYSIN DD \
 INCLUDE 33,DELSEG=(3,4)
 CHARSET REF=(1,ð2),GCM=BODE,ASSIGN=ð3
 \\\\\\\\ SEQ=ð6
 \\\\\\\\\\ SEQ=ð7
 \\\\ \\\\ SEQ=ð8
 \\\ \\\ SEQ=ð9
 \\\ \\\\ SEQ=1ð
 \\\ \\\\\\ SEQ=11
 \\\ \\\\\\ SEQ=12
 \\\ \\\\ SEQ=13
 \\\ \\\\ SEQ=14
 \\\ \\\ SEQ=15
 \\\ \\\ SEQ=16

\\\ \\\\ \\\\ SEQ=17
 \\\ \\\\\\\ SEQ=18
 \\\ \\\\\ SEQ=19
 NAME 53
 /\

The control statements are discussed below:

� The SYSUT1 DD statement includes DISP=OLD to ensure that no other job
can modify the data set while this job is executing.

� The INCLUDE statement specifies that a copy of the library character set
module named 33 is to be included with the new module. All segments of 33,
except the third and fourth segments (as a result of DELSEG=3,4), are to be
copied into the new module and become the basis for the new module.

� The CHARSET statement specifies the module's third and fourth segments:

200 DFSMS/MVS V1R5 Utilities

 IEBIMAGE

REF=(1,02) and GCM=BODE specify that the third segment of the new module
is to be obtained by copying the first segment from the graphic character mod-
ification module named BODE. The segment's 6-bit WCGM-location code is to
be set so that its character is identified with the code X'02'.

ASSIGN=03 specifies that the new module's fourth segment is a user-designed
character whose 6-bit WCGM-location code is X'03' and whose width is
10-pitch (the default when no pitch value is specified). The CHARSET state-
ment is followed by data statements that specify the character's scan pattern.

� The name of the library character set module is 53, it is stored as a new
module in the SYS1.IMAGELIB data set.

 IEBIMAGE (Create Printer Image) Program 201

 IEBIMAGE

202 DFSMS/MVS V1R5 Utilities

 IEBISAM

 IEBISAM Program

It is recommended that ISAM data sets be converted VSAM for optimal use of
DFSMS. VSAM is faster and more reliable. ISAM data sets cannot be
SMS-managed.

You can use access method services to allocate a VSAM key-sequenced data set
and copy an ISAM data set into it. Access method services are also used to manip-
ulate VSAM key-sequenced data sets. See DFSMS/MVS Using Data Sets and the
REPRO command in DFSMS/MVS Access Method Services for ICF for information
on converting ISAM data sets to VSAM key-sequenced data sets.

You can use IEBISAM to:

� Copy an indexed sequential (ISAM) data set directly from one DASD volume to
another.

� Create a backup (transportable) copy of an ISAM data set by copying
(unloading) it into a sequential data set on a DASD or magnetic tape volume.

� Create an ISAM data set from an unloaded data set. The sequential (unloaded)
data set is in a form that can be subsequently loaded, that is, it can be con-
verted back into an ISAM data set.

� Print an ISAM data set.

Copying an ISAM Data Set
IEBISAM can be used to copy an indexed sequential (ISAM) data set directly from
one DASD volume to another. When the data set is copied, the records marked for
deletion are only deleted if the DELETE parameter was specified in the OPTCD
(optional control program service) field. Those records that are contained in the
overflow area of the original data set are moved into the primary area of the copied
data set. Control information characteristics such as BLKSIZE and OPTCD can be
overridden by new specifications. Caution should be used, however, when over-
riding these characteristics (see “Overriding DCB Control Information” on
page 204).

Creating a Sequential Backup Copy
An unloaded sequential data set can be created to serve as a backup or transport-
able copy of source data from an ISAM data set. Records marked for deletion
within the ISAM data set are automatically deleted when the unloaded data set is
created. When the data set is subsequently loaded—reconstructed into an ISAM
data set—records that were contained in the overflow area assigned to the original
data set are moved sequentially into the primary area.

An unloaded data set consists of 80-byte logical records. The data set contains:

� Records from an ISAM data set
� Control information used in the subsequent loading of the data set

 Copyright IBM Corp. 1979, 1999 203

 IEBISAM

Control information consists of characteristics that were assigned to the ISAM data
set. These characteristics are:

� Optional control program service (OPTCD)
� Record format (RECFM)
� Logical record length (LRECL)
� Block size (BLKSIZE)
� Relative key position (RKP)
� Number of tracks in master index (NTM)
� Key length (KEYLEN)
� Number of overflow tracks on each cylinder (CYLOFL)

Overriding DCB Control Information
When a load operation is specified, control information characteristics can be over-
ridden by specifications in the DCB parameter of the SYSUT2 DD statement (refer
to “Control” on page 207 for a discussion of the SYSUT2 DD statement). Caution
should be used, however, because checks are made to ensure that:

1. Record format is the same as that of the original indexed sequential data set
(either fixed (F) or variable (V) length).

2. Logical record length is greater than or equal to that of the original ISAM data
set when the RECFM is variable (V) or variable blocked (VB).

3. For records, the block size is equal to or a multiple of the logical record length
of the records in the original indexed sequential data set. For variable records,
the block size is equal to or greater than the logical record length plus four.

4. Relative key position is equal to or less than the logical record length minus the
key length. Following are relative key position considerations:

� If the RECFM is V or VB, the relative key position should be at least 4.

� If the DELETE parameter was specified in the OPTCD field and the
RECFM is F or fixed blocked (FB), the relative key position should be at
least 1.

� If the DELETE parameter was specified in the OPTCD field and the
RECFM is V or VB, the relative key position should be at least 5.

5. The key length is less than or equal to 255 bytes.

6. For a fixed unblocked data set with RKP=0, the LRECL value is the length of
the data portion, not, as in all other cases, the data portion and key length.
When changing an RKP=0 data set RECFM from fixed unblocked and to fixed
blocked, the new LRECL must be equal to the old LRECL plus the old key
length.

If either RKP or KEYLEN is overridden, it may not be possible to reconstruct
the data set.

The number of 80-byte logical records in an unloaded data set can be approxi-
mated by the following formula:

n(y+2) + 158
78

x =

204 DFSMS/MVS V1R5 Utilities

 IEBISAM

where x is the number of 80-byte logical records created, n is the number of
records in the ISAM data set, and y is the length of a fixed record or the
average length of variable records.

Figure 71. An Unloaded Data Set Created Using IEBISAM

Figure 71 shows the format of an unloaded data set for the first three 100-byte
records of an ISAM data set. Each logical record in the unloaded data set con-
tains a binary sequence number (aa) in the first 2 bytes of the record. Each
record begins with 2 bytes (bb) that indicate the number of bytes in that record.
(The last record is followed by 2 bytes containing binary zeros to identify the
last logical record in the unloaded data set.) The characteristics of the ISAM
data set are contained in the first two logical records of the unloaded data set.
Data from the ISAM data set begins in the third logical record.

7. For variable records, all records in the data set must have a length equal to or
greater than RKP plus KEYLEN.

Creating an ISAM Data Set from an Unloaded Data Set
An ISAM data set can be created from an unloaded version of an ISAM data set.
When the unloaded data set is loaded, those records that were contained in the
overflow area assigned to the original ISAM data set are moved sequentially into
the primary area of the loaded ISAM data set.

Printing the Logical Records of an ISAM Data Set
The records of an ISAM data set can be printed or stored as a sequential data set
for subsequent printing. Each input record is placed in a buffer from which it is
printed or placed in a sequential data set. When the DELETE parameter is speci-
fied in the OPTCD field, each input record not marked for deletion is also placed in
a buffer from which it is printed or placed in a sequential data set. Each printed
record is converted to hexadecimal unless specified otherwise by you.

 IEBISAM Program 205

 IEBISAM

Using IEBISAM User Exits
This section is intended to help you toinvoke exit routines with IEBISAM. This
section documents General-use Programming Interface and Associated Guidance
Information provided by DFSMS/MVS.

General-use programming interfaces allow the customer to write programs that
obtain the services of DFSMS/MVS.

IEBISAM provides user exits so you can include user-written routines to:

� Modify records before printing.

� Select records for printing or stop the printing operation after a certain number
of records have been printed.

� Convert the format of a record to be printed.

� Provide a record heading for each record if the record length is at least 18
bytes.

If no user routines are provided, each record is identified in sequential order on the
printout.

| Exit routines must be included in the job library, step library, or link library.

When a user routine is supplied for a print operation, IEBISAM issues a LOAD
macro instruction to make the routine available. IEBISAM uses a BALR 14,15
instruction to give control to the user's routine in a 24–bit addressing mode. When
the user's routine receives control, register 0 contains a pointer to a record heading
buffer; register 1 contains a pointer to an input record buffer. (You must save regis-
ters 2 through 14 when control is given to the user routine.)

The input record buffer has a length equal to that of the input logical record.

Figure 72 shows the record heading buffer.

Figure 72. Record Heading Buffer Used by IEBISAM

You return control to IEBISAM by issuing a RETURN macro instruction (via register
14) or by using a BR 14 instruction after restoring registers 2 through 14.

206 DFSMS/MVS V1R5 Utilities

 IEBISAM

A user routine must place a return code in register 15 before returning control to
IEBISAM. The possible return codes and their meanings are listed in Figure 73 on
page 207.

Figure 73. IEBISAM User Exit Return Codes

Codes Meaning

00 (X'00') Buffers are to be printed. The operation continues.

04 (X'04') Buffers are to be printed. The operation is ended.

08 (X'08') This input record is not to be printed. Processing continues.

12 (X'0C') This input record is not to be printed. The operation is ended.

Input and Output
IEBISAM uses an input data set as follows:

� If a data set is to be copied, unloaded, or printed in logical sequence, the input
is an ISAM data set.

� If a data set is to be loaded, the input is an unloaded version of an ISAM data
set.

IEBISAM produces as output:

� An output data set, which is the result of the IEBISAM operation.

� A message data set, which contains information messages and any error mes-
sages.

See Appendix A.

 Control
IEBISAM is controlled by job control statements only. No utility control statements
are required.

Figure 74 shows the job control statements for IEBISAM.

Figure 74. Job Control Statements for IEBISAM

Statement Use

JOB Starts the job.

EXEC Specifies the program name (PGM=IEBISAM). Additional information is
required on the EXEC statement to control the execution of IEBISAM;
see EXEC Statement

SYSUT1 DD Defines the input data set.

SYSUT2 DD Defines the output data set.

SYSPRINT DD Defines a sequential data set for messages, which can be written to a
system output device, a tape volume, or a direct access device. If the
block size is not a multiple of 121, a default value of 121 is taken (no
error message is issued, and no condition code is set).

 IEBISAM Program 207

 IEBISAM

 EXEC Statement
The PARM parameter on the EXEC statement is used to control the execution of
IEBISAM.

The syntax of the EXEC statement is:

where:

PARM={COPY|UNLOAD |LOAD|PRINTL[,N][,EXIT= routinename]}
specifies the action IEBISAM will perform.

COPY
specifies a copy operation. The SYSUT2 DD statement must include a
primary space allocation that is sufficient to accommodate records that
were contained in overflow areas in the original ISAM data set. New over-
flow areas can be specified when the data set is copied.

UNLOAD
specifies an unload operation. Specifications that are implied by default or
included in the DCB parameter of the SYSUT2 DD statement (for example,
tape density) must be considered when the data set is subsequently
loaded. If a block size is specified in the DCB parameter of the SYSUT2
DD statement, it must be a multiple of 80 bytes. UNLOAD is the default.

LOAD
specifies a load operation. If the input data set resides on an unlabeled
tape, the SYSUT1 DD statement must specify a BLKSIZE that is a multiple
of 80 bytes. Specifications that are implied by default or included in the
DCB parameter of the SYSUT1 DD statement must be consistent with
specifications that were implied or included in the DCB parameter of the
SYSUT2 DD statement used for the UNLOAD operation. The SYSUT2 DD
statement must include a primary space allocation that is sufficient to
accommodate records that were contained in overflow areas in the original
ISAM data set. If new overflow areas are desired, they must be specified
when the data set is loaded.

PRINTL[,N][,EXIT= routinename]
specifies a print operation. If the device defined by the SYSUT2 DD state-
ment is a printer, the specified BLKSIZE must be equal to or less than the
physical printer size. If BLKSIZE is not specified, 121 bytes is assumed.
LRECL (or BLKSIZE when no LRECL was specified) must be between 55
and 255 bytes. PRINTL by itself will cause each record to be converted to
hexadecimal before printing. You can override this by specifying:

N to indicate that records are to be printed without being converted to
hexadecimal.

EXIT=routinename
to indicate the name of an exit routine that is to receive control before
each record is printed. Exit routines must be included in either the job
library or the link library.

//[stepname] EXEC PGM=IEBISAM
,PARM={COPY|UNLOAD |LOAD|
 PRINTL[,N][,EXIT=
routinename]}

208 DFSMS/MVS V1R5 Utilities

 IEBISAM

For a discussion of the linkage conventions used for exit routines, see
“Printing the Logical Records of an ISAM Data Set” on page 205.

If you specify N or EXIT with PRINTL, you must enclose the expressions in
parentheses or apostrophes.

 IEBISAM Examples
The following examples illustrate some of the uses of IEBISAM. Figure 75 can be
used as a quick-reference guide to IEBISAM examples. The numbers in the
“Example” column point to the examples that follow.

Figure 75. IEBISAM Example Directory

Operation
Data Set Organiza-
tion Device Comments Example

COPY ISAM Disk Unblocked input; blocked output.
Prime area and index separation.

1

LOAD Sequential, ISAM Tape and
Disk

Input data set is second data set on
tape volume.

3

PRINTL ISAM, Sequential Disk and
Printer

Blocked input. Output not converted. 4

UNLOAD ISAM, Sequential Disk and
Tape

Blocked output. 2

Examples that use disk or tape in place of actual device numbers must be
changed before use. The actual device numbers depend on how your installation
has defined the devices to your system.

Example 1: Copy Data Set from Two Volumes
In this example, an ISAM data set is copied from two DASD volumes. The output
data is blocked.

 //CPY JOB ...
 //STEP1 EXEC PGM=IEBISAM,PARM=COPY
 //SYSPRINT DD SYSOUT=A
 //SYSUT1 DD DSNAME=ISAMð1,VOLUME=SER=(222222,333333),
 // DISP=(OLD,DELETE),UNIT=(disk,2),
 // DCB=(DSORG=IS,LRECL=5ðð,BLKSIZE=5ðð,RECFM=F,RKP=4)
 //SYSUT2 DD DSNAME=ISAMð2(INDEX),UNIT=disk,
 // DCB=(DSORG=IS,BLKSIZE=1ððð,RECFM=FB),
 // DISP=(NEW,KEEP),VOLUME=SER=444444,SPACE=(CYL,(2))
 // DD DSNAME=ISAMð2(PRIME),UNIT=(disk,2),
 // DCB=(DSORG=IS,BLKSIZE=1ððð,RECFM=FB),DISP=(NEW,KEEP),
 // SPACE=(CYL,(1ð)),VOLUME=SER=(444444,555555),

The job control statements are discussed below:

� EXEC specifies the program name (IEBISAM) and the COPY operation.

� SYSUT1 DD defines an ISAM input data set, ISAM01, which resides on two
disk volumes.

� SYSUT2 DD defines the output data set index area, ISAM02; the index and
prime areas are separated.

 IEBISAM Program 209

 IEBISAM

� The second SYSUT2 DD defines the output data set prime area. Ten cylinders
are allocated for the prime area on each of the two disk volumes.

Example 2: Unload an ISAM Data Set
In this example, an ISAM input data set is unloaded into a sequential data set; the
output is placed on a tape volume.

 //CONVERT2 JOB ...
 //STEP1 EXEC PGM=IEBISAM,PARM=UNLOAD
 //SYSPRINT DD SYSOUT=A
 //SYSUT1 DD DSNAME=INDSEQ,UNIT=disk,DISP=(OLD,KEEP),
 // VOLUME=SER=111112
 //SYSUT2 DD DSNAME=UNLDSET,UNIT=tape,LABEL=(,SL),
 // DISP=(,KEEP),VOLUME=SER=ðð1234,
 // DCB=(RECFM=FB,LRECL=8ð,BLKSIZE=64ð)

The job control statements are discussed below:

� EXEC specifies the program name (IEBISAM) and the UNLOAD operation.

� SYSUT1 DD defines the ISAM input data set, INDSEQ, which resides on a disk
volume.

� SYSUT2 DD defines the unloaded output data set, UNLDSET. The data set
consists of fixed blocked records, and is to reside as the first or only data set
on a tape volume.

Example 3: Load an Unloaded ISAM Data Set
In this example, an unloaded data set is converted to the form of the original ISAM
data set.

 //CONVERT3 JOB ...
 //STEP1 EXEC PGM=IEBISAM,PARM=LOAD
 //SYSPRINT DD SYSOUT=A
 //SYSUT1 DD DSNAME=UNLDSET,UNIT=tape,LABEL=(2,SL),
 // DISP=(OLD,KEEP),VOLUME=SER=ðð1234
 //SYSUT2 DD DSNAME=INDSEQ,DISP=(,KEEP),DCB=(DSORG=IS),
 // SPACE=(CYL,(1)),VOLUME=SER=111112,UNIT=disk

The job control statements are discussed below:

� EXEC specifies the program name (IEBISAM) and the LOAD operation.

� SYSUT1 DD defines the input data set, UNLDSET, which is a sequential
(unloaded) data set. The data set is the second data set on a tape volume.

� SYSUT2 DD defines the output data set, INDSEQ which is an ISAM data set.
One cylinder of space is allocated for the data set on a disk volume.

Example 4: Print an ISAM Data Set
In this example, the logical records of an ISAM data set are printed on a system
output device.

210 DFSMS/MVS V1R5 Utilities

 IEBISAM

 //PRINT JOB ...
 //STEP1 EXEC PGM=IEBISAM,PARM='PRINTL,N'
 //SYSPRINT DD SYSOUT=A
 //SYSUT1 DD DSNAME=ISAMð3,UNIT=disk,DISP=OLD,
 // VOLUME=SER=222222
 //SYSUT2 DD SYSOUT=A

The job control statements are discussed below:

� EXEC specifies the program name (IEBISAM) and the PRINTL operation. Since
N is specified, the output records are not converted to hexadecimal prior to
printing.

� SYSUT1 DD defines the input data set, ISAM03, which resides on a disk
volume.

� SYSUT2 DD defines the output data set (in this case, the system printer). A
logical record length (LRECL) of 121 bytes is assumed.

 IEBISAM Program 211

 IEBISAM

212 DFSMS/MVS V1R5 Utilities

 IEBPTPCH

IEBPTPCH (Print-Punch) Program

You can use IEBPTPCH to print or punch all, or selected portions, of a sequential
or partitioned data set or PDSE. Data can also be “printed” or “punched” to disk or
tape.

IEBPTPCH can be used to print or punch:

� A sequential or partitioned data set, or PDSE, in its entirety
� Selected members from a partitioned data set or PDSE
� Selected records from a sequential or partitioned data set, or PDSE
� The directory of a partitioned data set or PDSE
� An edited version of a sequential or partitioned data set or PDSE
� A data set containing double-byte character set data.

You can specify the format for records you are printing or punching, or you can use
IEBPTPCH's default formats. The default formats are:

� Each logical output record begins on a new printed line or punched card.

� Each printed line consists of groups of eight characters separated by two
blanks. Up to 96 data characters can be included on a printed line. Each
punched card contains up to 80 contiguous bytes of information.

� Characters that cannot be printed appear as blanks.

� When the input is blocked, each logical output record is delimited by “*” and
each block is delimited by “**.”

� Sixty lines per page will be printed.

If you specify your own format, using the RECORD utility control statement, be sure
that your output record length does not exceed the capability of the output device.

IEBPTPCH provides optional editing facilities and exits for routines that you want to
use to process labels or manipulate input or output records.

Printing or Punching an Entire Data Set or Selected Member
You can use IEBPTPCH to print or punch an entire sequential or partitioned data
set or PDSE, or only a selected member of a partitioned data set or PDSE.
Members can be selected using the MEMBER utility control statement.

Data sets can be printed in hexadecimal if you choose. If you are printing a data
set containing packed decimal data, the packed decimal data should be converted
to unpacked decimal or hexadecimal mode to ensure that all characters are print-
able. Use the RECORD utility control statement to specify data conversion.

Printing or Punching an Edited Data Set
IEBPTPCH can be used to print or punch an edited version of a sequential or a
partitioned data set or PDSE. Utility control statements can be used to specify
editing information that applies to a record, a group of records, selected groups of
records, or an entire member or data set. You can print up to 144 characters per
line.

 Copyright IBM Corp. 1979, 1999 213

 IEBPTPCH

An edited data set is produced by:

� Rearranging or omitting defined data fields within a record

� Converting data from packed decimal to unpacked decimal or from alphanu-
meric to hexadecimal representation

Printing or Punching Double-Byte Character Set Data
Using IEBPTPCH, you can print or punch data sets that contain double-byte char-
acter set (DBCS) data. A double-byte character set is used to represent languages
too complex for the standard single-byte character set. Japanese, for example,
requires a double-byte character set. To indicate that DBCS data must be proc-
essed, code the DBCS=YES parameter on the PRINT or PUNCH statements.

Double-byte character set strings are identified by being enclosed in the shift-out
(<) and shift-in (>) characters. When IEBPTPCH sees the shift-out character, it
understands that your data is now “shifting out” of a single-byte character set string,
and when it sees the shift-in character, it understands that your data is now
“shifting into” a single-byte character set string.

Each byte in a double-byte character must have a value between X'41' and X'FE'
inclusive, or the DBCS character must be a DBCS space (X'4040'). You can use
IEBPTPCH to verify that your data conforms to this standard before it is printed or
punched. If needed, IEBPTPCH can also insert the shift-out/shift-in characters. This
checking can be specified using the conversion variables in the FIELD parameter of
the RECORD statement.

The default printing format for data sets with DBCS data is different from the default
for single-byte character set data. The maximum number of DBCS characters will
be printed for each output line, when you code PRINT DBCS=YES. IEBPTPCH will
ensure that an output record will not end within a DBCS string. If an entire DBCS
string will not fit on one printed line, IEBPTPCH will enclose each line in shift-
out/shift-in characters. These control characters will not be printed, but will ensure
that the printer recognizes the data as DBCS strings.

Printing or Punching Selected Records
IEBPTPCH makes it possible for you to select only certain records from a data set
for printing or punching. Utility control statements can be used to specify:

� The termination of a print or punch operation after a specified number of
records has been printed or punched.

� The printing or punching of every nth record.

� The starting of a print or punch operation after a specified number of records.

Printing or Punching a Partitioned Directory
You can print or punch the contents of a partitioned directory using IEBPTPCH. If
the directory is printed in hexadecimal representation, the first four printed charac-
ters of each directory block indicate the total number of bytes used in that block.
For details of the format of the directory, see DFSMS/MVS Using Data Sets. If the

214 DFSMS/MVS V1R5 Utilities

 IEBPTPCH

directory is punched, data from the directory block is punched in contiguous
columns in the punched cards representing that block.

Although PDSE directories do not contain blocks, they will be printed or punched in
the same format as the directory of a partitioned data set.

Printing or Punching to Disk or Tape
You can use IEBPTPCH to “print” or “punch” a data set to disk or tape. If you do
so, the first character of each record will be an ASA carriage control character,
which is used to control the printing or punching operation. You can print or punch
the data set at a later time using the PREFORM=A parameter of the PRINT and
PUNCH statements.

If you punch a data set to disk or tape, you can, at your option, include sequence
numbers in positions 73 through 80.

If the data set contains double-byte character set data, shift-out/shift-in characters
(< and >) will be inserted at the beginning and end of a record if the DBCS string
exceeds the logical record length of the output data set.

Input and Output
IEBPTPCH uses the following input:

� An input data set, which contains the data that is printed or punched. The input
data set can be either sequential or partitioned.

� A control data set, which contains utility control statements. The control data
set is required for each use of IEBPTPCH.

IEBPTPCH produces the following output:

� An output data set, which is the printed or punched data set.

� A message data set, which contains informational messages (for example, the
contents of the control statements) and any error messages.

If IEBPTPCH is invoked from an application program, you can dynamically allocate
the data sets by issuing SVC 99 before calling IEBPTPCH.

See Appendix A for IEBPTPCH return codes.

 Control
IEBPTPCH is controlled by job and utility control statements. The job control state-
ments are required to process or load the IEBPTPCH program and to define the
data sets that are used and produced by the program. The utility control statements
are used to control the functions of IEBPTPCH.

Job Control Statements
Figure 76 shows the job control statements for IEBPTPCH.

 IEBPTPCH (Print-Punch) Program 215

 IEBPTPCH

Figure 76. Job Control Statements for IEBPTPCH

Statement Use

JOB Starts the job step.

EXEC Specifies the program name (PGM=IEBPTPCH) or, if the job control
statements reside in a procedure library, the procedure name.

SYSPRINT DD Defines a sequential data set for messages. The data set can be written
to a system output device, a tape volume, or a direct access device.

SYSUT1 DD Defines an input sequential or partitioned data set, or PDSE.

SYSUT2 DD Defines the output (print or punch) data set.

SYSIN DD Defines the control data set. The control data set normally resides in the
input stream; however, it can be defined as a member in a partitioned
data set or PDSE.

SYSPRINT DD Statement
The SYSPRINT DD statement is required for each use of IEBPTPCH. The record
format is always FBA, the logical record length is always 121. Output can be
blocked by specifying a block size that is a multiple of 121 on the SYSPRINT DD
statement. The default block size is 121.

SYSUT1 DD Statement
The SYSUT1 DD statement is required for each use of IEBPTPCH. The record
format (except for undefined records), block size and logical record length (except
for undefined and fixed unblocked records) must be present on the DD statement,
in the DSCB, or on the tape label.

The input data set can contain fixed, variable, undefined, or variable spanned
records. Variable spanned records are permitted only when the input is sequential.

Directories of partitioned data sets or PDSEs are considered sequential data sets.
Specify TYPORG=PS on the PRINT or PUNCH statement. You must specify
RECFM=U, BLKSIZE=256, and LRECL=256 on the SYSUT1 DD statement.

SYSUT2 DD Statement
The SYSUT2 DD statement is required every time IEBPTPCH is used. The record
format is always FBA or FBM. The LRECL parameter, or, if no logical record length
is specified, the BLKSIZE parameter, specifies the number of characters to be
written per printed line or per punched card (this count must include the control
character). The number of characters specified must be in the range of 2 through
145. The default values for edited output lines are 121 characters per printed line
and 81 characters per punched card.

The SYSUT2 data set can be blocked by specifying both the LRECL and the
BLKSIZE parameters, in which case, block size must be a multiple of logical record
length.

Both the output data set and the message data set can be written to the system
output device if it is a printer.

If the logical record length of the input records is such that the output would exceed
the output record length, IEBPTPCH divides the record into multiple lines or cards
in the case of standard printed output, standard punched output, or when the

216 DFSMS/MVS V1R5 Utilities

 IEBPTPCH

PREFORM parameter is specified. For nonstandard output, or if the PREFORM
parameter is not specified, only part of the input record is printed or punched (maxi-
mums determined by the specific characteristics of your output device).

SYSIN DD Statement
The SYSIN DD statement is required for each use of IEBPTPCH. The record
format is always FB, the logical record length is always 80. Any blocking factor that
is a multiple of 80 can be specified for the block size. The default block size is 80.

Utility Control Statements
IEBPTPCH is controlled by utility control statements. The control statements in
Figure 77 are shown in the order in which they must appear.

Control statements are included in the control data set, as required. Any number of
MEMBER and RECORD statements can be included in a job step.

A nonblank character in column 72 is optional for IEBPTPCH continuation state-
ments. Continuation requirements for utility control statements are described in
“Continuing Utility Control Statements” on page 8.

Figure 77. IEBPTPCH Utility Control Statements

Statement Use

PRINT Specifies that the data is printed.

PUNCH Specifies that the data is punched.

TITLE Specifies that a title is to precede the printed or punched data.

EXITS Specifies that you are providing exit routines.

MEMBER Specifies which member of a partitioned data set or PDSE you want
printed or punched.

RECORD Specifies the format in which you want your data printed or punched.

LABELS Specifies whether your labels are to be treated as data.

PRINT and PUNCH Statements
You use the PRINT and PUNCH statements to specify whether the data set is to
be printed or punched. You must include one of these statements as the first state-
ment of your control data set. You cannot use both statements at once, and you
cannot use a statement more than once.

The syntax of the PRINT and PUNCH statements is:

 IEBPTPCH (Print-Punch) Program 217

 IEBPTPCH

where:

PREFORM={A|M}
specifies that a control character is provided as the first character of each
record to be printed or punched. The control characters are used to control the
spacing, number of lines per page, page ejection, and selecting a stacker. That
is, the output has been previously formatted, and should be printed or punched
according to that format. If an error occurs, the print/punch operation is
stopped. If PREFORM is coded, any additional PRINT or PUNCH operands
other than TYPORG, and all other control statements except for LABELS,
are ignored. Any ignored statement or operands are checked for correct
syntax, however. PREFORM must not be used for printing or punching data
sets with VS or VBS records longer than 32K bytes. These values are coded
as follows:

A specifies that an ASA control character is provided as the first character of
each record to be printed or punched. If the input record length exceeds
the output record length, the utility uses the ASA character for printing the
first line, with a single space character on all subsequent lines of the record
(for PRINT), or duplicates the ASA character on each output card of the
record (for PUNCH).

If you are printing or punching a data set that was formatted using
IEBPTPCH, PREFORM=A should be coded.

M specifies that a machine-code control character is provided as the first
character of each record to be printed or punched. If the input record length
exceeds the output record length, the utility prints all lines of the record with
a print-skip-one-line character until the last line of the record, which will
contain the actual character provided as input (for PRINT), or duplicates the
machine control character on each output card of the record (for PUNCH).

TYPORG={PS|PO}
specifies the organization of the input data set. These values are coded as
follows:

[label] {PRINT|
 PUNCH}

[PREFORM={A|M}]
[,TYPORG={PS |PO}]
[,TOTCONV={XE|PZ}]
[,CNTRL={ n|1}]
[,STRTAFT=n]
[,STOPAFT=n]
[,SKIP=n]
[,MAXNAME= n]
[,MAXFLDS= n]
[,MAXGPS=n]
[,MAXLITS= n]
[,DBCS={YES|NO }]
[,INITPG=n]
[,MAXLINE= n]
[,CDSEQ=n]
[,CDINCR=n]

Note:

� INITPG and MAXLINE can only be specified with PRINT
� CDSEQ and CDINCR can only be specified with PUNCH

218 DFSMS/MVS V1R5 Utilities

 IEBPTPCH

PS specifies that the input data set is organized sequentially. This is the
default.

PO specifies that the input data set is partitioned.

TOTCONV={XE|PZ}
specifies the representation of data to be printed or punched. TOTCONV can
be overridden by any user specifications (RECORD statements) that pertain to
the same data. These values are coded as follows:

XE
specifies that data is punched in 2-character-per-byte hexadecimal repre-
sentation (for example, C3 40 F4 F6). If XE is not specified, data is
punched in 1-character per byte alphanumeric representation. The above
example would appear as C 46.

The converted portion of the input record (length L) occupies 2L output
characters.

PZ specifies that data (packed decimal mode) is converted to unpacked
decimal mode. IEBPTPCH does not check for packed decimal mode.

The converted portion of the input record (length L) occupies 2L-1 output
characters when punching, and 2L output characters

Default: If TOTCONV is omitted, data is not converted.

CNTRL={n|1}
For PRINT, CNTRL specifies an ASA control character for the output device
that indicates line spacing, as follows: 1 indicates single spacing (the default), 2
indicates double spacing, and 3 indicates triple spacing.

For PUNCH, CNTRL specifies an ASA control character for the output device
that is used to select the stacker, as follows: 1 indicates the first stacker (the
default), 2 indicates the second stacker, and 3 indicates the third stacker, if
any.

STRTAFT=n
specifies, for sequential data sets, the number of logical records (physical
blocks in the case of variable spanned (VS) or variable block spanned (VBS)
records longer than 32K bytes) to be skipped before printing or punching
begins. For partitioned data sets or PDSEs, STRTAFT specifies the number of
logical records to be skipped in each member before printing or punching
begins. The n value must not exceed 32767. If STRTAFT is specified and
RECORD statements are present, the first RECORD statement of a member
describes the format of the first logical record to be printed or punched.

STOPAFT=n
specifies, for sequential data sets, the number of logical records (or physical
blocks in the case of VS or VBS records longer than 32K bytes) to be printed
or punched. For partitioned data sets or PDSEs, this specifies the number of
logical records (or physical blocks in the case of VS or VBS records longer than
32K bytes) to be printed or punched in each member to be processed. The n
value must not exceed 32767. If STOPAFT is specified and the IDENT param-
eter of the RECORD statement is also specified, the operation is stopped.
when the STOPAFT count is satisfied or at the end of the first record group,
whichever occurs first.

 IEBPTPCH (Print-Punch) Program 219

 IEBPTPCH

SKIP=n
specifies that every nth record (or physical block in the case of VS or VBS
records longer than 32K bytes) is printed or punched.

Default: Successive logical records are printed or punched.

MAXNAME=n
specifies a number no less than the total number of member names and
aliases appearing in subsequent MEMBER statements. The value must not
exceed 32767.

If MAXNAME is omitted when there is a MEMBER statement present, the print
or punch request is stopped.

MAXFLDS=n
specifies a number no less than the total number of FIELD parameters
appearing in subsequent RECORD statements. The value must not exceed
32767.

If MAXFLDS is omitted when there is a FIELD parameter present, the print or
punch request is stopped.

MAXGPS=n
specifies a number no less than the total number of IDENT parameters
appearing in subsequent RECORD statements. The value must not exceed
32767.

If MAXGPS is omitted when there is an IDENT parameter present, the print or
punch request is stopped.

MAXLITS=n
specifies a number no less than the total number of characters contained in the
IDENT literals of subsequent RECORD statements. The value must not exceed
32767.

If MAXLITS is omitted when there is a literal present, the print or punch request
is ended.

DBCS={YES|NO}
specifies whether the data set to be printed or punched contains double-byte
character set data. NO is the default.

INITPG=n
specifies the initial page number; the pages are numbered sequentially there-
after. The INITPG value must not exceed 9999. The default is 1.

INITPG can only be coded with the PRINT statement.

MAXLINE=n
specifies the maximum number of lines to a printed page. Spaces, titles, and
subtitles are included in this number. The default is 60 lines per page.

MAXLINE can only be coded with the PRINT statement.

CDSEQ=n
specifies the first sequence number of a deck of punched cards. This value
must be contained in columns 73 through 80. Sequence numbering is initialized
for each member of a partitioned data set. The default is that cards are not
numbered.

CDSEQ can only be coded with the PUNCH statement.

220 DFSMS/MVS V1R5 Utilities

 IEBPTPCH

CDINCR=n
specifies the increment to be used in generating sequence numbers. The
default increment value is 10, unless CDSEQ is not coded, in which case the
records are not numbered.

CDINCR can only be coded with the PUNCH statement.

 TITLE Statement
Use the TITLE statement to specify any titles or subtitles you want printed or
punched with your data set. Two TITLE statements can be included for each use of
IEBPTPCH. A first TITLE statement defines the title, and a second defines the sub-
title. The TITLE statement, if included, follows the PRINT or PUNCH statement in
the control data set.

If you are printing a data set, the titles you specify will be printed on every page.

The syntax of the TITLE statement is:

where:

ITEM=('title'[,output-location])
specifies title or subtitle information. The values that can be coded are:

'title'
specifies the title or subtitle literal (maximum length of 40 bytes), enclosed
in apostrophes. If the literal contains apostrophes, each apostrophe must
be written as two consecutive apostrophes. The literal coded for 'title' is
not affected by the TOTCONV parameter of the PRINT or PUNCH state-
ments. You can specify a double-byte character set string as your title. To
do so, enclose the DBCS string in shift-out/shift-in characters (< and >).

You can also specify the title in hexadecimal. To do so, code the title as
title . This is especially useful if you do not have a keyboard that has all the
characters you need. The shift-out/shift-in characters are X'0E' and X'0F',
respectively.

output-location
specifies the starting position at which the literal for this item is placed in
the output record. When used with output-location, the specified title's
length plus output-location may not exceed the output logical record length
minus one.

Default: The first position (byte) is assumed.

You can specify ITEM more than once on a TITLE statement. In this way, you
can have titles longer than 40 characters, or you can format your title according
to your needs.

[label] TITLE ITEM=('title'[,
output-location])[,ITEM=...]

 IEBPTPCH (Print-Punch) Program 221

 IEBPTPCH

 EXITS Statement
The EXITS statement is used to identify exit routines that you want IEBPTPCH to
use for label or record processing. Exits to label processing routines are ignored if
the input data set is partitioned. Linkage to and from user routines are discussed in
Appendix C, “Specifying User Exits with Utility Programs” on page 389.

The EXITS statement, if used, must immediately follow any TITLE statement or
follow the PRINT or PUNCH statement.

The syntax of the EXITS statement is:

where:

INHDR=routinename
specifies the name of the routine that processes user input header labels.

INTLR=routinename
specifies the name of the routine that processes user input trailer labels.

INREC=routinename
specifies the name of the routine that manipulates each logical record (or phys-
ical block in the case of VS or VBS records longer than 32K bytes) before it is
processed.

OUTREC=routinename
specifies the name of the routine that manipulates each logical record (or phys-
ical block in the case of VS or VBS records longer than 32K bytes) before it is
printed or punched.

[label] EXITS [INHDR=routinename]
[,INTLR= routinename]
[,INREC=routinename]
[,OUTREC=routinename]

 MEMBER Statement
You use the MEMBER statement to identify members of partitioned data sets or
PDSEs that you want printed or punched. All RECORD statements that follow a
MEMBER statement pertain to the member indicated in that MEMBER statement
only. When RECORD and MEMBER statements are used, at least one MEMBER
statement must precede the first RECORD statement. If no RECORD statement is
used, the member is processed according to the default format.

If no MEMBER statement appears, and a partitioned data set or PDSE is being
processed, all members of the data set are printed or punched. Any number of
MEMBER statements can be included in a job step.

If a MEMBER statement is present in the input stream, MAXNAME must be speci-
fied in a PRINT or PUNCH statement.

The syntax of the MEMBER statement is:

where:

[label] MEMBER NAME={membername|aliasname}

222 DFSMS/MVS V1R5 Utilities

 IEBPTPCH

NAME={membername|aliasname}
specifies a member of a partitioned data set or PDSE to be printed or punched.
The values that can be coded are:

membername
specifies a member by its member name.

aliasname
specifies a member by its alias name.

If a MEMBER statement is present in the input stream, MAXNAME must be
specified in a PRINT or PUNCH statement.

 RECORD Statement
The RECORD statement is used to define a group of records, called a record
group, that is printed or punched to your specifications. A record group consists of
any number of records to be edited identically.

If no RECORD statements appear, the entire data set, or named member, is
printed or punched in the default format. If a RECORD statement is used, all data
following the record group it defines (within a partitioned member or within an entire
sequential data set) must be defined with other RECORD statements. Any number
of RECORD statements can be included in a job step.

A RECORD statement referring to a partitioned data set or PDSE for which no
members have been named need contain only FIELD parameters. These are
applied to the records in all members of the data set.

If a FIELD parameter is included in the RECORD statement, MAXFLDS must be
specified in the PRINT or PUNCH statement.

If an IDENT parameter is included in the RECORD statement, MAXGPS and
MAXLITS must be specified in the PRINT or PUNCH statement.

The syntax of the RECORD statement is:

where:

IDENT=(length,'name',input-location)
identifies the last record of the record group to which the FIELD parameters
apply. The values that can be coded are:

length
specifies the length (in bytes) of the field that contains the identifying name
in the input records. The length cannot exceed 8 bytes.

'name'
specifies the exact literal, enclosed in apostrophes, that identifies the last
record of a record group. If the literal contains apostrophes, each must be
written as two consecutive apostrophes.

[label] RECORD [IDENT=(length,'name',
input-location)]
[,FIELD=(length,[input-location],[conversion],
 [output-location])][,FIELD=...]

 IEBPTPCH (Print-Punch) Program 223

 IEBPTPCH

You can specify 'name' in hexadecimal by coding name . You can also
specify a DBCS string for 'name', either in DBCS characters or in the
hexadecimal representation of DBCS characters. If you use hexadecimal
for a DBCS string, the hexadecimal values of the shift-out/shift-in charac-
ters are X'0E' and X'0F', respectively.

input-location
specifies the starting location of the field that contains the identifying name
in the input records.

The sum of the length and the input location must be equal to or less than the
input logical record length plus one.

Default: If IDENT is omitted and STOPAFT is not included with the PRINT or
PUNCH statement, record processing stops after the last record in the data set.
If IDENT is omitted and STOPAFT is included with the PRINT or PUNCH state-
ment, record processing halts when the STOPAFT count is satisfied or after the
last record of the data set is processed, whichever occurs first.

If an IDENT parameter is included in the RECORD statement, MAXGPS and
MAXLITS must be specified in the PRINT or PUNCH statement.

FIELD=(length,[input-location],[conversion],[output-location])
specifies field-processing and editing information.

Note that the variables on the FIELD parameter are positional; that is, if any of
the options are not coded, the associated comma preceding that variable must
be coded.

These values can be coded:

length
specifies the length (in bytes) of the input field to be processed. The length
must be equal to or less than the first input logical record length.

input-location
specifies the starting position of the input field to be processed. The sum of
the length and the input location must be equal to or less than the input
logical record length plus one.

Default: The first position (byte) is assumed.

conversion
specifies the type of conversion to be performed on this field before it is
printed or punched. The values that can be coded are:

CV
specifies that double-byte character set characters are combined with
single-byte character set characters, and that the DBCS characters
should be checked to ensure that they are printable. No shift-out/shift-in
characters will be inserted to enclose DBCS strings.

DBCS=YES must be specified on the PRINT or PUNCH statement.

PZ specifies that packed decimal data is to be converted to unpacked
decimal data. The converted portion of the input record (length L) occu-
pies 2L - 1 output characters when punching, and 2L output characters
when printing.

224 DFSMS/MVS V1R5 Utilities

 IEBPTPCH

VC
specifies that double-byte character set characters should be checked
to ensure that they are printable, and that shift-out/shift-in characters (<
and >) are to be inserted to enclose the DBCS strings.

DBCS=YES must be specified on the PRINT or PUNCH statement.

XE
specifies that alphanumeric data is to be converted to hexadecimal
data. The converted portion of the input record (length L) occupies 2L
output characters.

Default: The field is moved to the output area without change.

output-location
specifies the starting location of this field in the output records. Unspecified
fields in the output records appear as blanks in the printed or punched
output. Data that exceeds the SYSUT2 printer or punch size is not printed
or punched. When specifying one or more FIELDs, the sum of all lengths
and all extra characters needed for conversions must be equal to or less
than the output LRECL minus one.

Default: The first position (byte) is assumed.

If a FIELD parameter is included in the RECORD statement, MAXFLDS must
be specified in the PRINT or PUNCH statement.

 LABELS Statement
You use the LABELS statement to specify whether you want your data set labels
treated as data. For a detailed discussion of this option, refer to “Processing User
Labels” on page 394.

You must specify LABELS DATA=NO to make standard user label (SUL) exits inac-
tive when you are processing an input data set with nonstandard labels (NSL).

If more than one valid LABELS statement is included, all but the last LABELS state-
ment are ignored.

The syntax of the LABELS statement is:

where:

CONV={PZ|XE}
specifies the type of conversion to be performed on this field before it is printed
or punched. The values that can be coded are:

PZ specifies that data (packed decimal) is converted to unpacked decimal
data. The converted portion of the input record (length L) occupies 2L - 1
output characters when punching, and 2L output characters when printing.

XE
specifies that alphanumeric data is to be converted to hexadecimal data.
The converted portion of the input record (length L) occupies 2L output
characters.

[label] LABELS [CONV={PZ|XE}]
[,DATA={YES |NO|ALL|ONLY] }

 IEBPTPCH (Print-Punch) Program 225

 IEBPTPCH

Default: The field is moved to the output area without change.

DATA={YES |NO|ALL|ONLY}
specifies whether user labels are to be treated as data. The values that can be
coded are:

YES
specifies that any user labels are to be treated as data unless they have
been rejected by a label processing routine you have specified on the
EXITS statement. Processing of labels as data stops in compliance with
standard return codes. YES is the default.

NO
specifies that user labels are not to be treated as data. NO must be speci-
fied when processing input/output data sets with nonstandard labels (NSL)
in order to make standard user label (SUL) exits inactive.

ALL
specifies that all user labels are to be treated as data. A return code of 16
causes the utility to complete the processing of the remainder of the group
of user labels and to stop the job step.

ONLY
specifies that only user header labels are to be treated as data. User
header labels are processed as data regardless of any return code. The job
ends upon return from the OPEN routine.

 IEBPTPCH Examples
The following examples illustrate some of the uses of IEBPTPCH. Figure 78 can be
used as a quick-reference guide to IEBPTPCH examples. The numbers in the
“Example” column refer to the examples that follow:

Figure 78 (Page 1 of 2). IEBPTPCH Example Directory

Operation
Data Set Organiza-
tion Devices Comments Example

PRINT Partitioned Disk and
System
Printer

Default format. Conversion to
hexadecimal. Ten records from each
member are printed.

8

PRINT Partitioned Disk and
System
Printer

Default format. Conversion to
hexadecimal. Two members are
printed.

9

PRINT Partitioned Disk and
System
Printer

DBCS data is checked and printed. 10

PRINT Sequential System
Printer

Default format. Conversion to
hexadecimal.

3

PRINT Sequential Tape and
System
Printer

User-specified format. 4

PRINT Sequential Disk and
System
Printer

User-specified format. User routines
are provided. Processing ends after
the third record group is printed or
STOPAFT is satisfied.

5

226 DFSMS/MVS V1R5 Utilities

 IEBPTPCH

Figure 78 (Page 2 of 2). IEBPTPCH Example Directory

Operation
Data Set Organiza-
tion Devices Comments Example

| PRINT| Sequential| System
| Printer
| Print with user exit routine.| 6

PRINT Sequential, Parti-
tioned

Disk and
System
Printer

Default format. Conversion to
hexadecimal.

7

PUNCH Sequential Disk and
Card Punch

User-specified format. Sequence
numbers are assigned and punched.

1

PUNCH Sequential Card Reader
and Card
Punch

Default format. A copy of a set of
cards is made.

2

Examples that use disk or tape in place of actual device numbers must be
changed before use. The actual device numbers depend on how your installation
has defined the devices to your system.

Example 1: Print Partitioned Data Set
In this example, a member of partitioned data set is printed according to user spec-
ifications.

| PRINT TYPORG=Pð,MAXNAME=1,MAXFLDS=1
| MEMBER NAME=UTILUPD8
| RECORD FIELD=(8ð)

Note: If the member card entry is not used the entire data cell will be printed.

Example 2: Punch Sequential Data Sets
In this example, a sequential data set is punched according to user specifications.

| //PHSEQNO JOB ...
| //STEP1 EXEC PGM=IEBPTPCH
| //SYSPRINT DD SYSOUT=A
| //SYSUT1 DD DSNAME=MASTER.SEQSET,LABEL=(,SUL),DISP=SHR
| //SYSUT2 DD SYSOUT=B
| //SYSIN DD \
| PUNCH MAXFLDS=1,CDSEQ=ð,CDINCR=2ð
| RECORD FIELD=(72)
| LABELS DATA=YES
| /\

The control statements are discussed below:

| � SYSUT1 DD defines the input data set, MASTER.SEQSET, which resides on a
| disk or tape volume. The data set contains 80-byte, fixed blocked records.

� SYSUT2 DD defines the system output class (punch is assumed). That portion
of each record from the input data set defined by the FIELD parameter is
represented by one punched card.

� SYSIN DD defines the control data set, which follows in the input stream.

� PUNCH begins the punch operation, indicates that one FIELD parameter is
included in a subsequent RECORD statement (MAXFLDS=1), and assigns a
sequence number for the first punched card (00000000) and an increment

 IEBPTPCH (Print-Punch) Program 227

 IEBPTPCH

value for successive sequence numbers (20). Sequence numbers are placed in
columns 73 through 80 of the output records.

� RECORD indicates that positions 1 through 72 of the input records are to be
punched. Bytes 73 through 80 of the input records are replaced by the new
sequence numbers in the output card deck.

� LABELS specifies that user header labels and user trailer labels are punched.

Labels cannot be edited; they are always moved to the first 80 bytes of the output
buffer. No sequence numbers are present on the cards containing user header and
user trailer records.

Example 3: Duplicate a Card Deck
In this example, a card deck containing valid punch card code or BCD is dupli-
cated.

 //PUNCH JOB ...
 //STEP1 EXEC PGM=IEBPTPCH
 //SYSPRINT DD SYSOUT=A
 //SYSIN DD DSNAME=PDSLIB(PNCHSTMT),DISP=(OLD,KEEP)
 //SYSUT2 DD SYSOUT=B
 //SYSUT1 DD DATA

(input card data set including // cards)
 /\

The control statements are discussed below:

� SYSIN DD defines the control data set PDSLIB which contains the member
PNCHSTMT. (The data set is cataloged.) The record format must be FB and
the logical record length must be 80.

� SYSUT2 DD defines the system output class (punch is assumed).

� SYSUT1 DD defines the input card data set, which follows in the input stream.

Example 4: Print Sequential Data Set According to Default Format
In this example, a sequential data set is printed according to the default format. The
printed output is converted to hexadecimal.

 //PRINT JOB ...
 //STEP1 EXEC PGM=IEBPTPCH
 //SYSPRINT DD SYSOUT=A
 //SYSUT1 DD DSNAME=INSET,UNIT=tape,
 // LABEL=(,NL),VOLUME=SER=ðð1234,
 // DISP=(OLD,KEEP),DCB=(RECFM=U,BLKSIZE=2ððð)
 //SYSUT2 DD SYSOUT=A
 //SYSIN DD \
 PRINT TOTCONV=XE

TITLE ITEM=('PRINT SEQ DATA SET WITH CONV TO HEX',1ð)
 /\

The control statements are discussed below:

� SYSUT1 DD defines the input data set on a tape volume. The data set con-
tains undefined records; no record is larger than 2,000 bytes.

228 DFSMS/MVS V1R5 Utilities

 IEBPTPCH

� SYSUT2 DD defines the output data set. The data set is written to the system
output device (printer assumed). Each printed line contains groups (8 charac-
ters each) of hexadecimal information. Each input record begins a new line of
printed output. The size of the input record and the carriage width determine
how many lines of printed output are required per input record.

� SYSIN DD defines the control data set, which follows in the input stream.

� PRINT begins the print operation and specifies conversion from alphanumeric
to hexadecimal representation.

� TITLE specifies a title to be placed beginning in column 10 of the printed
output. The title is not converted to hexadecimal.

Example 5: Print Sequential Data Set According to User Specifications
In this example, a sequential data set is printed according to user specifications.

 //PTNONSTD JOB ...
 //STEP1 EXEC PGM=IEBPTPCH
 //SYSPRINT DD SYSOUT=A
 //SYSUT1 DD DSNAME=SEQSET,UNIT=tape,LABEL=(2,SUL),
 // DISP=(OLD,KEEP),VOLUME=SER=ðð1234
 //SYSUT2 DD SYSOUT=A
 //SYSIN DD \
 PRINT MAXFLDS=1
 EXITS INHDR=HDRIN,INTLR=TRLIN
 RECORD FIELD=(8ð)
 LABELS DATA=YES
 /\

The control statements are discussed below:

� SYSUT1 DD defines the input data set, SEQSET, which is the second data set
on a tape volume.

� SYSUT2 DD defines the output data set on the system output device (printer
assumed). Each printed line contains 80 contiguous characters (one record) of
information.

� SYSIN DD defines the control data set, which follows in the input stream.

� PRINT begins the print operation and indicates that one FIELD parameter is
included in a subsequent RECORD statement (MAXFLDS=1).

� EXITS indicates that exits will be taken to user header label and trailer label
processing routines when these labels are encountered on the SYSUT1 data
set.

� RECORD indicates that each input record is processed in its entirety (80
bytes). Each input record is printed in columns 1 through 80 on the printer.

� LABELS specifies that user header and trailer labels are printed according to
the return code issued by the user exits.

 IEBPTPCH (Print-Punch) Program 229

 IEBPTPCH

Example 6: Print Three Record Groups
In this example, three record groups are printed. A user routine is provided to
manipulate output records before they are printed.

 //PRINT JOB ...
 //STEP1 EXEC PGM=IEBPTPCH
 //SYSPRINT DD SYSOUT=A
 //SYSUT1 DD DSNAME=SEQDS,UNIT=disk,DISP=(OLD,KEEP),
 // LABEL=(,SUL),VOLUME=SER=111112
 //SYSUT2 DD SYSOUT=A
 //SYSIN DD \
 PRINT MAXFLDS=9,MAXGPS=9,MAXLITS=23,STOPAFT=32767
 TITLE ITEM=('TIMECONV-DEPT Dð6'),
 ITEM=('JAN1ð-17',8ð)
 EXITS OUTREC=NEWTIME,INHDR=HDRS,INTLR=TLRS
 RECORD IDENT=(6,'498414',1),
 FIELD=(8,1,,1ð),FIELD=(3ð,9,XE,2ð)
 RECORD IDENT=(2,'\\',39),
 FIELD=(8,1,,1ð),FIELD=(3ð,9,XE,2ð)
 RECORD IDENT=(6,'498414',1),
 FIELD=(8,1,,1ð),FIELD=(3ð,9,XE,2ð)
 LABELS CONV=XE,DATA=ALL
 /\

The control statements are discussed below:

� SYSUT1 DD defines the input data set, called SEQDS. The data set resides on
a disk volume.

� SYSUT2 DD defines the output data set on the system output device (printer
assumed).

� SYSIN DD defines the control data set, which follows in the input stream.

� The PRINT statement:

1. Initializes the print operation.
2. Indicates that not more than nine FIELD parameters are included in subse-

quent RECORD statements (MAXFLDS=9).
3. Indicates that not more than nine IDENT parameters are included in subse-

quent RECORD statements (MAXGPS=9).
4. Indicates that not more than 23 literal characters are included in subse-

quent IDENT parameters (MAXLITS=23).
5. Indicates that processing is ended after 32767 records are processed or

after the third record group is processed, whichever comes first. Because
MAXLINE is omitted, 60 lines are printed on each page.

� TITLE specifies two titles, to be printed on one line. The titles are not converted
to hexadecimal.

� EXITS specifies the name of a user routine (NEWTIME), which is used to
manipulate output records before they are printed.

� The first RECORD statement defines the first record group to be processed
and indicates where information from the input records is placed in the output
records. Positions 1 through 8 of the input records appear in positions 10
through 17 of the printed output, and positions 9 through 38 are printed in
hexadecimal representation and placed in positions 20 through 79.

230 DFSMS/MVS V1R5 Utilities

 IEBPTPCH

� The second RECORD statement defines the second group to be processed.
The parameter in the IDENT operand specifies that an input record last record
edited according to the FIELD operand in this RECORD statement. The FIELD
operand specifies that positions 1 through 8 of the input records are placed in
positions 10 through 17 of the printed output, and positions 9 through 38 are
printed in hexadecimal representation and appear in positions 20 through 79.

� The third and last RECORD statement is equal to the first RECORD statement.
An input record that meets the parameter in the IDENT operand ends proc-
essing, unless the STOPAFT parameter in the PRINT statement has not
already done so.

� LABELS specifies that all user header or trailer labels are to be printed regard-
less of any return code, except 16, issued by the user's exit routine. It also
indicates that the labels are converted from alphanumeric to hexadecimal rep-
resentation (CONV=XE).

Example 7: Print a Pre-Formatted Data Set
In this example, the input is a SYSOUT (sequential) data set, which was previously
written as the second data set of a standard label tape. It is printed in SYSOUT
format.

 //PTSYSOUT JOB ...
 //STEP1 EXEC PGM=IEBPTPCH
 //SYSPRINT DD SYSOUT=A
 //SYSUT1 DD UNIT=tape,LABEL=(2,SL),DSNAME=LISTING,
 // DISP=(OLD,KEEP),VOL=SER=ðð1234
 //SYSUT2 DD SYSOUT=A
 //SYSIN DD \
 PRINT PREFORM=A
 /\

The control statements are discussed below:

� SYSUT1 DD defines the input data set, which was previously written as the
second data set of a standard label tape. The data set has been assigned the
name LISTING.

� SYSUT2 DD defines the output data set on the system output device (printer
assumed).

� SYSIN DD defines the control data set, which follows in the input stream.

� The PRINT statement begins the print operation and indicates that an ASA
control character is provided as the first character of each record to be printed
(PREFORM=A).

Example 8: Print Directory of a Partitioned Data Set
In this example, the directory of a partitioned data set is printed. The printed output
is converted to hexadecimal.

 IEBPTPCH (Print-Punch) Program 231

 IEBPTPCH

 //PRINTDIR JOB ...
 //STEP1 EXEC PGM=IEBPTPCH
 //SYSPRINT DD SYSOUT=A
 //SYSUT1 DD DSNAME=PDS,UNIT=disk,VOLUME=SER=111112,
 // DISP=(OLD,KEEP),DCB=(RECFM=U,BLKSIZE=256)
 //SYSUT2 DD SYSOUT=A
 //SYSIN DD \
 PRINT TYPORG=PS,TOTCONV=XE

TITLE ITEM=('PRINT PARTITIONED DIRECTORY OF PDS',1ð)
TITLE ITEM=('FIRST TWO BYTES SHOW NUM OF USED BYTES',1ð)

 LABELS DATA=NO
 /\

The control statements are discussed below:

� SYSUT1 DD defines the input data set (the partitioned directory), which resides
on a disk volume.

� SYSUT2 DD defines the output data set on the system output device (printer
assumed). Each printed line contains groups (8 characters each) of
hexadecimal information. Each input record begins a new line of printed output.
The size of the input record and the carriage width determine how many lines
of printed output are required per input record.

� SYSIN DD defines the control data set, which follows in the input stream.

� PRINT begins the print operation, indicates that the partitioned directory is
organized sequentially, and specifies conversion from alphanumeric to
hexadecimal representation.

� The first TITLE statement specifies a title, and the second TITLE statement
specifies a subtitle. Neither title is converted to hexadecimal.

� LABELS specifies that no user labels are printed.

Note: Not all of the bytes in a directory block need contain data pertaining to the
partitioned data set; unused bytes are sometimes used by the operating
system as temporary work areas. With conversion to hexadecimal represen-
tation, the first four characters of printed output indicate how many bytes of
the 256-byte block pertain to the partitioned data set. Any unused bytes
occur in the latter portion of the directory block; they are not interspersed
with the used bytes.

Example 9: Print Selected Records of a Partitioned Data Set
In this example, a partitioned data set (ten records from each member) is printed
according to the default format. The printed output is converted to hexadecimal.

 //PRINTPDS JOB ...
 //STEP1 EXEC PGM=IEBPTPCH
 //SYSPRINT DD SYSOUT=A
 //SYSUT1 DD DSNAME=PDS,UNIT=disk,DISP=(OLD,KEEP),
 // VOLUME=SER=111112
 //SYSUT2 DD SYSOUT=A
 //SYSIN DD \
 PRINT TOTCONV=XE,TYPORG=PO,STOPAFT=1ð

TITLE ITEM=('PRINT PDS - 1ð RECS EACH MEM',2ð)
 /\

The control statements are discussed below:

232 DFSMS/MVS V1R5 Utilities

 IEBPTPCH

� SYSUT1 DD defines the input data set, called PDS, on a disk volume.

� SYSUT2 DD defines the output data set on the system output device (printer
assumed). Each printed line contains groups (8 characters each) of
hexadecimal information. Each input record begins a new line of printed output.
The size of the input record and the carriage width determine how many lines
of printed output are required per input record.

� SYSIN DD defines the control data set, which follows in the input stream.

� PRINT begins the print operation, specifies conversion from alphanumeric to
hexadecimal representation, indicates that the input data set is partitioned, and
specifies that 10 records from each member are to be printed.

� TITLE specifies a title to be placed beginning in column 20 of the printed
output. The title is not converted to hexadecimal.

Example 10: Convert to Hexadecimal and Print Partitioned Data
In this example, two partitioned members are printed according to the default
format. The printed output is converted to hexadecimal.

 //PRNTMEMS JOB ...
 //STEP1 EXEC PGM=IEBPTPCH
 //SYSPRINT DD SYSOUT=A
 //SYSUT1 DD DSNAME=PDS,DISP=(OLD,KEEP),VOLUME=SER=111112,
 // UNIT=disk
 //SYSUT2 DD SYSOUT=A
 //SYSIN DD \
 PRINT TYPORG=PO,TOTCONV=XE,MAXNAME=2

TITLE ITEM=('PRINT TWO MEMBS WITH CONV TO HEX',1ð)
 MEMBER NAME=MEMBER1
 MEMBER NAME=MEMBER2
 /\

The control statements are discussed below:

� SYSUT1 DD defines the input data set, called PDS, on a disk volume.

� SYSUT2 DD defines the output data set on the system output device (printer
assumed). Each printed line contains groups (8 characters each) of
hexadecimal information. Each input record begins a new line of printed output.
The size of the input record and the carriage width determine how many lines
of printed output are required per input record.

� SYSIN DD defines the control data set, which follows in the input stream.

� PRINT begins the print operation, indicates that the input data set is partitioned,
specifies conversion from alphanumeric to hexadecimal representation, and
indicates that two MEMBER statements appear in the control data set
(MAXNAME=2).

� TITLE specifies a title to be placed beginning in column 10 of the printed
output. The title is not converted to hexadecimal.

� MEMBER specifies the member names of the members to be printed
(MEMBER1 and MEMBER2).

 IEBPTPCH (Print-Punch) Program 233

 IEBPTPCH

Example 11: Print Member Containing DBCS Data
In this example, a member of a partitioned data set that contains DBCS data is
printed after the DBCS data is checked to ensure that all DBCS characters are
printable.

 //DBCS JOB ...
 //STEP1 EXEC PGM=IEBPTPCH
 //SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=PDS,UNIT=disk,DISP=(OLD,KEEP)
//SYSUT2 DD SYSOUT=A

 //SYSIN DD \
 PRINT TYPORG=PO,DBCS=YES,MAXFLDS=1,MAXNAME=1
 MEMBER NAME=MEM1
 RECORD FIELD=(,,CV)
 /\

The control statements are discussed below:

� SYSUT1 DD defines the input data set, PDS, on a disk volume.

� SYSUT2 DD defines the system printer as the output data set.

� SYSIN DD defines the control data set, which follows in the input stream.

� PRINT begins the print operation, indicates that the input data set is partitioned,
and indicates that double-byte character set data will be printed. The statement
also indicates that one MEMBER statement appears in the control data set,
and that one FIELD parameter appears on a subsequent RECORD statement.

� MEMBER specifies the member, MEM1, that is to be printed.

� RECORD specifies that the DBCS data is to be checked to ensure that it is
printable.

234 DFSMS/MVS V1R5 Utilities

 IEBUPDTE

IEBUPDTE (Update Data Set) Program

You can use IEBUPDTE to create or modify sequential or partitioned data sets or
PDSEs. However, the program can be used only with data sets containing fixed-
length records of no more than 80 bytes. (It is used primarily for updating proce-
dure, source, and macro libraries; those containing JCL, for example.)

IEBUPDTE can be used to:

� Incorporate IBM or your source language modifications into sequential or parti-
tioned data sets, or PDSEs

� Create and update data set libraries

� Modify existing sequential data sets or members of partitioned data sets or
PDSEs

� Change the organization of a data set from sequential to partitioned or PDSE,
or the reverse.

You can also use your own exit routines to process header and trailer labels.

Creating and Updating Data Set Libraries
IEBUPDTE can be used to create a library of partitioned members, if those
members have logical record lengths of 80 or less. In addition, members can be
added directly to an existing library, provided that the original space allocations are
sufficient to incorporate the new members. In this manner, a cataloged procedure
can be placed in a procedure library, or a set of job or utility control statements can
be placed as a member in a partitioned library. These libraries may be either parti-
tioned data sets or PDSEs.

Modifying an Existing Data Set
IEBUPDTE can be used to modify an existing partitioned or sequential data set, or
PDSE. Logical records can be replaced, deleted, renumbered, or added to the
member or data set.

A sequential data set residing on a tape volume can be used to create a new
master (that is, a modified copy) of the data set. A sequential data set residing on a
direct access device can be modified either by creating a new master or by modi-
fying the data set directly on the volume on which it resides.

A partitioned data set or PDSE can be modified either by creating a new master or
by modifying the data set directly on the volume on which it resides.

Changing Data Set Organization
IEBUPDTE can be used to change the organization of a data set from sequential to
partitioned or PDSE, or to change a single member of a partitioned data set or
PDSE to a sequential data set. If only a member is changed, the remainder of the
original data set remains unchanged. In addition, logical records can be replaced,
deleted, renumbered, or added to the member or data set.

 Copyright IBM Corp. 1979, 1999 235

 IEBUPDTE

Input and Output
IEBUPDTE uses the following input:

� An input data set (also called the old master data set), which is modified or
used as source data for a new master. The input data set is either a sequential
data set or a member of a partitioned data set or PDSE.

� A control data set, which contains utility control statements and, if applicable,
input data. The data set is required for each use of IEBUPDTE.

IEBUPDTE produces the following output:

� An output data set, which is the result of the IEBUPDTE operation. The data
set can be sequential, partitioned, or PDSE. It can be either a new data set
(that is, created during the present job step) or an existing data set, modified
during the present job step.

� A message data set, which contains the utility program identification, control
statements used in the job step, modification made to the input data set, and
diagnostic messages, if applicable. The message data set is sequential.

See Appendix A for IEBUPDTE return codes.

 Control
IEBUPDTE is controlled by job and utility control statements. The job control state-
ments are required to process or load IEBUPDTE and to define the data sets that
are used and produced by the program. The utility control statements are used to
control the functions of IEBUPDTE and, in certain cases, to supply new or replace-
ment data.

Job Control Statements
Figure 79 shows the job control statements for IEBUPDTE.

Figure 79. Job Control Statements for IEBUPDTE

Statement Use

JOB Starts the job.

EXEC Specifies the program name (PGM=IEBUPDTE), or, if the job control
statements reside in a procedure library, the procedure name. Additional
information can be specified in the PARM parameter of the EXEC state-
ment.

SYSPRINT DD Defines a sequential data set for messages. The data set can be written
to a system output device, a tape volume, or a direct access volume.

SYSUT1 DD Defines the input (old master) data set. It can define a sequential data
set on a card reader, a tape volume, or a direct access volume. It can
define a partitioned data set or PDSE on a direct access volume.

SYSUT2 DD Defines the output data set. It can define a sequential data set on a card
punch, a printer, a tape volume, or a direct access device. It can define
a partitioned data set or PDSE on a direct access volume.

SYSIN DD Defines the control data set. The control data set normally resides in the
input stream; however, it can be defined as a member of a partitioned
data set or PDSE.

236 DFSMS/MVS V1R5 Utilities

 IEBUPDTE

 EXEC Statement
Additional information can be coded in the PARM parameter of the EXEC state-
ment, as follows:

where:

PGM=IEBUPDTE
specifies that IEBUPDTE is the program you want to run.

PARM='{NEW|MOD}[, inhdr][, intlr]'

specifies optional information as follows:

NEW
specifies that the input consists solely of the control data set. Do not code
a SYSUT1 DD statement if you specify NEW.

MOD
specifies that the input consists of both the control data set and the input
data set. MOD is the default.

inhdr
specifies the name of the routine that processes the user header labels for
the control data set.

intlr
specifies the name of the routine that processes the user trailer labels for
the control data set.

If only one value is coded in PARM, the single quotes (or parentheses) are
optional.

//[stepname] EXEC PGM=IEBUPDTE
[,PARM='{NEW|MOD}[, inhdr][, intlr]']

SYSPRINT DD Statement
The message data set has a logical record length of 121 bytes, and consists of
fixed length, blocked or unblocked records with an American National Standards
Institute (ANSI) control character in the first byte of each record.

SYSUT1 and SYSUT2 DD Statements
If the SYSUT1 and SYSUT2 DD statements define the same sequential data set
(BDAM only), only those operations that add data to the end of the existing data set
can be made. In these cases:

� The PARM parameter of the EXEC statement must imply or specify MOD. (See
“EXEC Statement.”)

� The DISP parameter of the SYSUT1 DD statement must specify OLD.

If SYSUT1 and SYSUT2 define the same partitioned data set or PDSE, new
extents resulting from updates on SYSUT2 are not retrievable in SYSUT1.

The input and output data sets contain blocked or unblocked logical records with
record lengths of up to 80 bytes. The input and output data sets may have different

 IEBUPDTE (Update Data Set) Program 237

 IEBUPDTE

block sizes as long as they are multiples of the logical record length. However, if
insufficient space is allocated for reblocked records, the update request is ended.

If an ADD operation is specified with PARM=NEW in the EXEC statement, the
SYSUT1 DD statement need not be coded.

If the SYSUT1 DD statement defines a sequential data set on tape, the file
sequence number of that data set must be included in the LABEL keyword (unless
the data set is the first or only data set on the volume).

If the output data set (SYSUT2) does not already exist and is to reside on a direct
access device, space must be allocated for it. The SYSUT2 DD statement must not
specify a DUMMY data set.

When adding a member to an existing partitioned data set or PDSE using an ADD
function statement, any DCB parameters specified on the SYSUT1 and SYSUT2
DD statements (or the SYSUT2 DD statement if that is the only one specified) must
be the same as the DCB parameters already existing for the data set.

If an UPDATE=INPLACE operation is specified, the SYSUT2 DD statement should
not be coded.

If both the SYSUT1 and SYSUT2 DD statements specify standard user labels
(SUL), IEBUPDTE copies user labels from SYSUT1 to SYSUT2.

If the SYSUT1 and SYSUT2 DD statements define the same partitioned data set or
PDSE, the old master data set can be updated without creating a new master data
set; in this case, a copy of the updated member or members is written within the
extent of the space originally allocated to the old master data set. Subsequent
referrals to the updated members will point to the newly written members. The
member names themselves should not appear on the DD statements; they should
be referred to only through IEBUPDTE control statements. The old directory entry
for each member is not copied.

SYSIN DD Statement
The SYSIN DD statement is required for each use of IEBUPDTE. The control data
set contains 80-byte, blocked or unblocked records.

Utility Control Statements
Figure 80 shows the utility control statements used to control IEBUPDTE.

Figure 80. IEBUPDTE Utility Control Statements

Statement Use

Function Begins an IEBUPDTE operation (ADD, CHANGE, REPL, REPRO).

Detail Used with the function statement for special applications.

Data A logical record of data to be used as a new or replacement record in
the output data set.

LABEL Indicates that the following data statements are to be treated as user
labels.

ALIAS Assigns aliases.

ENDUP Stops IEBUPDTE.

238 DFSMS/MVS V1R5 Utilities

 IEBUPDTE

Note: Unlike other utility control statements, all IEBUPDTE utility control state-
ments (not including data statements) must begin with a “./” (period, slash)
in columns 1 and 2.

Continuation requirements for utility control statements are described in “Continuing
Utility Control Statements” on page 8.

 Function Statement
The function statement (ADD, CHANGE, REPL, or REPRO) is used to begin an
IEBUPDTE operation. At least one function statement must be provided for each
member or data set to be processed.

A member or a data set can be added directly to an old master data set if the
space originally allocated to the old master is sufficient to incorporate that new
member or data set. ADD specifies that a member or a data set is added to an old
master data set. If a member is added and the member name already exists in the
old master data set, processing is ended. If, however, PARM=NEW is specified on
the EXEC statement, the member is replaced. For a sequential output master data
set, PARM=NEW must always be specified on the EXEC statement.

When a member replaces an identically named member on the old master data set
or a member is changed and rewritten on the old master, the alias (if any) of the
original member still refers to the original member. However, if an identical alias is
specified for the newly written member, the original alias entry in the directory is
changed to refer to the newly written member.

REPL specifies that a member of a data set is being entered in its entirety as a
replacement for a sequential data set or for a member of the old master data set.
The member name must already exist in the old master data set. CHANGE speci-
fies that modifications are to be made to an existing member or data set. Use of
the CHANGE function statement without a NUMBER or DELETE detail statement,
or a data statement causes an error condition. REPRO specifies that a member or
a data set is copied in its entirety to a new master data set.

Members are logically deleted from a copy of a library by being omitted from a
series of REPRO function statements within the same job step.

One sequential data set can be copied in a given job step. A sequential data set is
logically deleted from a new volume by being omitted from a series of job steps
which copy only the desired data sets to the new volume. If the NEW subparameter
is coded in the EXEC statement, only the ADD function statement is permitted.

The syntax of the FUNCTION statement is:

 IEBUPDTE (Update Data Set) Program 239

 IEBUPDTE

where:

LIST=ALL
specifies that the SYSPRINT data set is to contain the entire updated member
or data set and the control statements used in its creation.

Default: For old data sets, if LIST is omitted, the SYSPRINT data set contains
modifications and control statements only. If UPDATE was specified, the entire
updated member is listed only when renumbering has been done. For new data
sets, the entire member or data set and the control statements used in its cre-
ation are always written to the SYSPRINT data set.

SEQFLD={ddl|(ddl,ddl)}
ddl specifies, in decimal, the starting column (up to column 80) and length (8 or
less) of sequence numbers within existing logical records and subsequent data
statements. Note that the starting column specification (dd) plus the length (l)
cannot exceed the logical record length (LRECL) plus 1. Sequence numbers on
incoming data statements and existing logical records must be padded to the
left with enough zeros to fill the length of the sequence field.

(ddl,ddl)
may be used when an alphanumeric sequence number generation is
required. The first ddl specifies the sequence number columns as above.
The second ddl specifies, in decimal, the starting column (up to column 80)
and length (8 or less) of the numeric portion of the sequence numbers in
subsequent NUMBER statements. This information is used to determine
which portion of the sequence number specified by the NEW1 parameter
may be increased and which portions should be copied to generate a new
sequence number for inserted or renumbered records.

The numeric columns must fall within the sequence number columns speci-
fied (or defaulted) by the first ddl.

Default: 738 is assumed, that is, an 8-byte sequence number beginning in
column 73. Therefore, if existing logical records and subsequent data state-
ments have sequence numbers in columns 73 through 80, this keyword need
not be coded.

./[label] {ADD|CHANGE|
 REPL|REPRO}

[LIST=ALL]
[,SEQFLD={ ddl|(ddl,ddl)}]
[,NEW={PO|PS}]
[,MEMBER=membername]
[,COLUMN={ nn|1}]
[,UPDATE=INPLACE]
[,INHDR=routinename]
[,INTLR= routinename]
[,OUTHDR=routinename]
[,OUTTLR= routinename]
[,TOTAL=(routinename,size)]
[,NAME=membername]
[,LEVEL= hh]
[,SOURCE=x]
[,SSI=hhhhhhhh]

Note: COLUMN and UPDATE=INPLACE can only be used with CHANGE

240 DFSMS/MVS V1R5 Utilities

 IEBUPDTE

NEW={PO|PS}
specifies the organization of the old master data set and the organization of the
updated output. NEW should not be specified unless the organization of the
new master data set is different from the organization of the old master. NEW
can only be coded on the first control record. Refer to Figure 81 on page 243
for the use of NEW with NAME and MEMBER. These values can be coded:

PO
specifies that the old master data set is a sequential data set, and that the
updated output is to become a member of a partitioned data set or PDSE.

PS
specifies that the old master data set is a partitioned data set or PDSE, and
that a member of that data set is to be converted into a sequential data set.

MEMBER=membername
specifies a name to be assigned to the member placed in the partitioned data
set or PDSE defined by the SYSUT2 DD statement. MEMBER is used only
when SYSUT1 defines a sequential data set, SYSUT2 defines a partitioned
data set or PDSE, and NEW=PO is specified. Refer to Figure 81 on page 243
for the use of MEMBER with NEW.

COLUMN={nn|1}
specifies, in decimal, the starting column of a data field within a logical record.
The field extends to the end of the logical record. Within an existing logical
record, the data in the defined field is replaced by data from a subsequent data
statement. See “Function Restrictions” on page 242 for restrictions on
COLUMN.

COLUMN may only be coded with CHANGE.

UPDATE=INPLACE
specifies that the old master data set is to be updated within the space it actu-
ally occupies. The old master data set must reside on a direct access device.
UPDATE=INPLACE is valid only when coded with CHANGE. No other function
statements (ADD, REPL, REPRO) may be in the same job step. See “Function
Restrictions” on page 242 for restrictions on using UPDATE=INPLACE.

INHDR=routinename
specifies the name of the user routine that handles any user input (SYSUT1)
header labels. This parameter is valid only when a sequential data set is being
processed. See Figure 11 on page 17 for information on updating user input
header labels.

INTLR=routinename
specifies the name of the user routine that handles any user input (SYSUT1)
trailer labels. INTLR is valid only when a sequential data set is being proc-
essed, but not when UPDATE=INPLACE is coded.

OUTHDR=routinename
specifies the name of the user routine that handles any user output (SYSUT2)
header labels. OUTHDR is valid only when a sequential data set is being proc-
essed, but not when UPDATE=INPLACE is coded.

OUTTLR=routinename
specifies the name of the user routine that handles any user output (SYSUT2)
trailer labels. OUTTLR is valid only when a sequential data set is being proc-
essed, but not when UPDATE=INPLACE is coded.

 IEBUPDTE (Update Data Set) Program 241

 IEBUPDTE

TOTAL=(routinename,size)
specifies that exits to a user's routine are to be provided prior to writing each
record. This parameter is valid only when a sequential data set is being proc-
essed. These values are coded:

routinename
specifies the name of your totaling routine.

size
specifies the number of bytes required for your data. The size should not
exceed 32K, nor be less than 2 bytes. In addition, the keyword OPTCD=T
must be specified for the SYSUT2 (output) DD statement.

Refer to Appendix C, “Specifying User Exits with Utility Programs” on
page 389 for a discussion of linkage conventions for user routines.

NAME=membername
indicates the name of the member placed into the partitioned data set or PDSE.
The member name need not be specified in the DD statement itself. NAME
must be provided to identify each input member. Refer to Figure 81 on
page 243 for the use of NAME with NEW. This parameter is valid only when a
member of a partitioned data set or PDSE is being processed.

LEVEL=hh
specifies the change (update) level in hexadecimal (00-FF). The level number is
recorded in the directory entry of the output member. This parameter is valid
only when a member of a partitioned data set or PDSE is being processed.
LEVEL has no effect when SSI is specified.

SOURCE=x
specifies your modifications when the x value is 0, or IBM modifications when
the x value is 1. The source is recorded in the directory entry of the output
member. This parameter is valid only when a member of a partitioned data set
or PDSE is being processed. SOURCE has no effect when SSI is specified.

SSI=hhhhhhhh
specifies eight hexadecimal characters of system status information (SSI) to be
placed in the directory of the new master data set as four packed decimal bytes
of user data. This parameter is valid only when a member of a partitioned data
set or PDSE is being processed. SSI overrides any LEVEL or SOURCE param-
eter given on the same function statement.

 Function Restrictions
When UPDATE=INPLACE is specified:

� The SYSUT2 DD statement is not coded.

� The PARM parameter of the EXEC statement must imply or specify MOD.

� The NUMBER detail statement can be used to specify a renumbering opera-
tion.

� Data statements can be used to specify replacement information only.

� One CHANGE function statement and one UPDATE=INPLACE parameter are
permitted per job step.

� No functions other than replacement, renumbering, and header label modifica-
tion (via the LABEL statement) can be specified.

242 DFSMS/MVS V1R5 Utilities

 IEBUPDTE

� Unless the entire data set is renumbered, only replaced records are listed.

� System status information cannot be changed.

When REPRO is specified, the ADD statement can be used in the same job step
only if both SYSUT1 and SYSUT2 are partitioned data sets or PDSEs; otherwise,
unpredictable results can occur.

Within an existing logical record, the data in the field defined by the COLUMN
parameter is replaced by data from a subsequent data statement, as follows:

1. IEBUPDTE matches a sequence number of a data statement with a sequence
number of an existing logical record. In this manner, the COLUMN specification
is applied to a specific logical record.

2. The information in the field within the data statement replaces the information in
the field within the existing logical record. For example, COLUMN=40 indicates
that columns 40 through 80 (assuming 80-byte logical records) of a subsequent
data statement are to be used as replacement data for columns 40 through 80
of a logical record identified by a matching sequence number. (A sequence
number in an existing logical record or data statement need not be within the
defined field.)

The COLUMN specification applies to the entire function, with the exception of:

� Logical records deleted by a subsequent DELETE detail statement.

� Subsequent data statements not having a matching sequence number for an
existing logical record.

� Data statements containing information to be inserted in the place of a deleted
logical record or records.

Figure 81 shows the use of NEW, MEMBER, and NAME parameters for different
input and output data set organizations.

 IEBUPDTE (Update Data Set) Program 243

 IEBUPDTE

Figure 81. NEW, MEMBER and NAME Parameters of the Function Statements

Input Data Set
Organization

Output Data
Set Organiza-
tion Parameter Combinations

None Partitioned or
PDSE (New)

With each ADD function statement, use NAME to assign a name for each
member to be placed in the data set.

Partitioned or
PDSE

Partitioned or
PDSE

With an ADD function statement, use NAME to specify the name of the
member to be placed in the data set defined by the SYSUT2 DD state-
ment. If an additional name is required, an ALIAS statement can also be
used.

With a CHANGE, REPL, or REPRO function statement, use NAME to
specify the name of the member within the data set defined by the
SYSUT1 DD statement. If a different or additional name is desired for the
member in the data set defined by the SYSUT2 DD statement, use an
ALIAS statement also.

Partitioned or
PDSE

Sequential With any function statement, use NAME to specify the name of the member
in the data set defined by the SYSUT1 DD statement. Use NEW=PS to
specify the change in organization from partitioned to sequential. (The
name and file sequence number, if any, assigned to the output master data
set are specified in the SYSUT2 DD statement.)

Sequential Partitioned or
PDSE

With applicable function statement, use MEMBER to assign a name to the
member to be placed in the data set defined by the SYSUT2 DD state-
ment. Use NEW=PO to specify the change in organization from sequential
to partitioned.

 Detail Statement
A detail statement is used with a function statement for certain applications, such
as deleting or renumbering selected logical records. The NUMBER detail statement
specifies, when coded with a CHANGE function statement, that the sequence
number of one or more logical records is changed. It specifies, when coded with
an ADD or REPL function statement, the sequence numbers to be assigned to the
records within new or replacement members or data sets. When used with an ADD
or REPL function statement, no more than one NUMBER detail statement is per-
mitted for each ADD or REPL function statement.

The DELETE detail statement specifies, when coded with a CHANGE function
statement, that one or more logical records are to be deleted from a member or
data set.

Logical records cannot be deleted in part; that is, a COLUMN parameter specifica-
tion in a function statement is not applicable to records that are to be deleted. Each
specific sequence number is handled only once in any single operation.

The syntax of the DETAIL statement is:

./[label] {NUMBER|
 DELETE}

[SEQ1={cccccccc|ALL}]
[,SEQ2=cccccccc]
[,NEW1=cccccccc]
[,INCR=cccccccc]
[,INSERT=YES]

Note: NEW1, INCR and INSERT can only be used with NUMBER

244 DFSMS/MVS V1R5 Utilities

 IEBUPDTE

where:

SEQ1={cccccccc|ALL}
specifies records to be renumbered, deleted, or assigned sequence numbers.
These values can be coded:

cccccccc
specifies the sequence number of the first logical record to be renumbered
or deleted. This value is not coded in a NUMBER detail statement that is
used with an ADD or REPL function statement. When this value is used in
an insert operation, it specifies the existing logical record after which an
insertion is to be made. It must not equal the number of a statement just
replaced or added. Refer to the INSERT parameter for additional dis-
cussion.

ALL
specifies a renumbering operation for the entire member or data set. ALL is
used only when a CHANGE function statement and a NUMBER detail
statement are used. ALL must be coded if sequence numbers are to be
assigned to existing logical records having blank sequence numbers. If ALL
is not coded, all existing logical records having blank sequence numbers
are copied directly to the output master data set. When ALL is coded,
SEQ2 need not be coded and one NUMBER detail statement is permitted
per function statement. Refer to the INSERT parameter for additional dis-
cussion.

SEQ2=cccccccc
specifies the sequence number of the last logical record to be renumbered or
deleted. SEQ2 is required on all DELETE detail statements. If only one record
is to be deleted, the SEQ1 and SEQ2 specifications must be identical. SEQ2
is not coded in a NUMBER detail statement that is used with an ADD or REPL
function statement.

NEW1=cccccccc
specifies the first sequence number assigned to new or replacement data, or
specifies the first sequence number assigned in a renumbering operation. A
value specified in NEW1 must be greater than a value specified in SEQ1
(unless SEQ1=ALL is specified, in which case this rule does not apply).

INCR=cccccccc
specifies an increment value used for assigning successive sequence numbers
to new or replacement logical records, or specifies an increment value used for
renumbering existing logical records.

INSERT=YES
specifies the insertion of a block of logical records. The records, which are data
statements containing blank sequence numbers, are numbered and inserted in
the output master data set. INSERT is valid only when coded with both a
CHANGE function statement and a NUMBER detail statement. SEQ1, NEW1
and INCR are required on the first NUMBER detail statement.

When INSERT=YES is coded:

� The SEQ1 parameter specifies the existing logical record after which the
insertion is made. SEQ1=ALL cannot be coded.

� The SEQ2 parameter need not be coded.

 IEBUPDTE (Update Data Set) Program 245

 IEBUPDTE

� The NEW1 parameter assigns a sequence number to the first logical record to
be inserted. If the parameter is alphanumeric, the SEQFLD=(ddl,ddl) parameter
should be coded on the function statement.

� The INCR parameter is used to renumber as much as is necessary of the
member or data set from the point of the first insertion; the member or data set
is renumbered until an existing logical record is found whose sequence number
is equal to or greater than the next sequence number to be assigned. If no
such logical record is found, the entire member or data set is renumbered.

� Additional NUMBER detail statements, if any, must specify INSERT=YES. If a
prior numbering operation renumbers the logical record specified in the SEQ1
parameter of a subsequent NUMBER detail statement, any NEW1 or INCR
parameter specifications in the latter NUMBER detail statement are overridden.
The prior increment value is used to assign the next successive sequence
numbers. If a prior numbering operation does not renumber the logical record
specified in the SEQ1 parameter of a subsequent NUMBER detail statement,
the latter statement must contain NEW1 and INCR specifications.

� The block of data statements to be inserted must contain blank sequence
numbers.

� The insert operation is stopped when a function statement, a detail statement,
an end-of-file indication, or a data statement containing a sequence number is
encountered.

 Detail Restrictions
The SEQ1, SEQ2 and NEW1 parameters (with the exception of SEQ1=ALL)
specify eight (maximum) alphanumeric characters. The INCR parameter specifies
eight (maximum) numeric characters. Only the significant part of a numeric
sequence number need be coded; for example, SEQ1=00000010 can be shortened
to SEQ1=10. If, however, the numbers are alphanumeric, the alphabetic characters
must be specified; for example, SEQ1=00ABC010 can be shortened to
SEQ1=ABC010.

 Data Statement
A data statement is used with a function statement, or with a function statement
and a detail statement. It contains a logical record used as replacement data for an
existing logical record, or new data to be incorporated in the output master data
set.

Each data statement contains one logical record, which begins in the first column of
the data statement. The length of the logical record is equal to the logical record
length (LRECL) specified for the output master data set. Each logical record con-
tains a sequence number to determine where the data is placed in the output
master data set (except when INSERT=YES is specified on a NUMBER statement).

When used with a CHANGE function statement, a data statement contains new or
replacement data, as follows:

� If the sequence number in the data statement is identical to a sequence
number in an existing logical record, the data statement replaces the existing
logical record in the output master data set.

� If no corresponding sequence number is found within the existing records, the
data statement is inserted in the proper collating sequence within the output

246 DFSMS/MVS V1R5 Utilities

 IEBUPDTE

master data set. (For proper execution of this function, all records in the old
master data set must have a sequence number.)

� If a data statement with a sequence number is used and INSERT=YES was
specified, the insert operation is stopped. IEBUPDTE will continue processing if
this sequence number is at least equal to the next old master record (record
following the referred to sequence record).

When used with an ADD or REPL function statement, a data statement contains
new data to be placed in the output master data set.

Sequence numbers within the old master data set are assumed to be in ascending
order. No validity checking of sequence numbers is performed for data statements
or existing records.

Sequence numbers in data statements must be in the same relative position as
sequence numbers in existing logical records. (Sequence numbers include leading
zeros and are assumed to be in columns 73 through 80; if the numbers are in
columns other than these, the length and relative position must be specified in a
SEQFLD parameter within a preceding function statement.)

 LABEL Statement
The LABEL statement indicates that the following data statements (called label data
statements) are to be treated as user labels. These new user labels are placed on
the output data set. The next control statement indicates to IEBUPDTE that the last
label data statement of the group has been read.

The syntax of the LABEL statement is:

There can be no more than two LABEL statements per execution of IEBUPDTE.
There can be no more than eight label data statements following any LABEL state-
ment. The first 4 bytes of each 80-byte label data statement must contain “UHLn”
or “UTLn,” where n is 1 through 8, for input header or input trailer labels respec-
tively, to conform to IBM standards for user labels. Otherwise, data management
will overlay the data with the proper four characters.

When IEBUPDTE encounters a LABEL statement, it reads up to eight data state-
ments and saves them for processing by user output label routines. If there are no
such routines, the saved records are written by OPEN or CLOSE as user labels on
the output data set. If there are user output label processing routines, IEBUPDTE
passes a parameter list to the output label routines. (See Appendix C, “Specifying
User Exits with Utility Programs” on page 389.) The label buffer contains a label
data record which the user routine can process before the record is written as a
label. If the user routine specifies (via return codes to IEBUPDTE) more entries
than there are label data records, the label buffer will contain meaningless informa-
tion for the remaining entries to the user routine.

The position of the LABEL statement in the SYSIN data set, relative to any function
statements, indicates the type of user label that follows the LABEL statement:

� To create output header labels, place the LABEL statement and its associated
label data statements before any function statements in the input stream. A

./[name] LABEL

 IEBUPDTE (Update Data Set) Program 247

 IEBUPDTE

function statement, other than LABEL, must follow the last label data statement
of the group.

� To create output trailer labels, place the LABEL statement and its associated
label data statements after any function statements in the input stream, but
before the ENDUP statement. The ENDUP statement is not optional in this
case. It must follow the last label data statement of the group if IEBUPDTE is
to create output trailer labels.

When UPDATE=INPLACE is specified in a CHANGE statement, user input header
labels can be updated by user routines, but input trailer and output labels cannot be
updated by user routines. User labels cannot be added or deleted. User input
header labels are made available to user routines by the label buffer address in the
parameter list. (See “Processing User Labels” on page 394 for further discussion of
the linkage between utility programs and user label processing routines.) The return
codes when CHANGE UPDATE=INPLACE is used differ slightly from the standard
return codes. See Appendix C, “Specifying User Exits with Utility Programs” on
page 389 for the appropriate return codes.

If you want to examine the replaced labels from the old master data set, you must:

1. Specify an update of the old master by coding the UPDATE=INPLACE param-
eter in a function statement.

2. Include a LABEL statement in the input data set for either header or trailer
labels.

3. Specify a corresponding user label routine.

If the above conditions are met, fourth and fifth parameter words will be added to
the standard parameter list. The fourth parameter word is not now used; the fifth
contains a pointer to the replaced label from the old master. In this case, the
number of labels supplied in the SYSIN data set must not exceed the number of
labels on the old master data set. If you specify, via return codes, more entries to
the user's header label routine than there are labels in the input stream, the first
parameter will point to the current header label on the old master data set for the
remaining entries. In this case, the fifth parameter is meaningless.

 ALIAS Statement
The ALIAS statement is used to create or retain an alias in an output (partitioned or
PDSE) directory. The ALIAS statement can be used with any of the function state-
ments. Multiple aliases can be assigned to each member, up to a maximum of 16
aliases.

If an ALIAS statement specifies a name that already exists on the data set, the
original TTR (track record) of that directory entry will be destroyed.

If ALIAS statements are used, they must follow the data statements, if any, in the
input stream.

The syntax of the ALIAS statement is:

where:

./[label] ALIAS NAME=aliasname

248 DFSMS/MVS V1R5 Utilities

 IEBUPDTE

NAME=aliasname
specifies a 1- to 8-character alias name.

 ENDUP Statement
An ENDUP statement is optional. It is used to indicate the end of SYSIN input to
this job step. If there is no other preceding delimiter statement, it serves as an end-
of-data indication. The ENDUP statement follows the last group of SYSIN control
statements.

When the ENDUP statement is used, it must follow the last label data statement if
IEBUPDTE is used to create output trailer labels.

The syntax of the ENDUP statement is:

./[label] ENDUP

 IEBUPDTE Examples
The following examples illustrate some of the uses of IEBUPDTE. Figure 82 can be
used as a quick-reference guide to IEBUPDTE examples. The numbers in the
“Example” column point to examples that follow.

Figure 82 (Page 1 of 2). IEBUPDTE Example Directory

Operation
Data Set Organiza-
tion Device Comments Example

ADD and REPL Partitioned Disk A JCL procedure is stored as a new
member of a procedure library
(PROCLIB). Another JCL procedure
is to replace an existing member in
PROCLIB.

1

COPY Sequential Disk Sequential data set is copied from
one direct access volume to another;
user labels can be processed by exit
routines.

10

CREATE Partitioned Disk Create a new generation. 11

CREATE Sequential Card Reader
and Disk

Sequential data set with user labels
is created from card input.

9

CREATE a parti-
tioned data set

Partitioned Disk Input from control data set and from
existing partitioned data set. Output
partitioned data set is to contain
three members.

3

CREATE a parti-
tioned library

Partitioned Disk Input data is in the control data set.
Output partitioned data set is to
contain three members.

2

CREATE and
DELETE

Partitioned,
Sequential

Disk and
Tape

Sequential master is created from
partitioned disk input. Selected
records are to be deleted. Blocked
output.

5

 IEBUPDTE (Update Data Set) Program 249

 IEBUPDTE

Figure 82 (Page 2 of 2). IEBUPDTE Example Directory

Operation
Data Set Organiza-
tion Device Comments Example

CREATE,
DELETE, and
UPDATE

Sequential, Parti-
tioned

Tape and
Disk

Partitioned data set is created from
sequential input. Records are to be
deleted and updated. Sequence
numbers in columns other than 73
through 80. One member is placed in
the output data set.

6

INSERT Partitioned Disk Block of logical records is inserted
into an existing member.

7

INSERT Partitioned Disk Two blocks of logical records are to
be inserted into an existing member.
Sequence numbers are alphanu-
meric.

8

UPDATE
INPLACE and
renumber

Partitioned Disk Input data set is considered to be the
output data set as well; therefore, no
SYSUT2 DD statement is required.

4

Examples that use disk or tape in place of actual device numbers must be
changed before use. The actual device numbers depend on how your installation
has defined the devices to your system.

Example 1: Place Two Procedures in SYS1.PROCLIB
In this example, two procedures are to be placed in the cataloged procedure library,
SYS1.PROCLIB. The example assumes that the two procedures can be accommo-
dated within the space originally allocated to the procedure library.

 //UPDATE JOB ...
 //STEP1 EXEC PGM=IEBUPDTE,PARM=MOD
 //SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=SYS1.PROCLIB,DISP=OLD
//SYSUT2 DD DSNAME=SYS1.PROCLIB,DISP=OLD

 //SYSIN DD DATA
 ./ ADD LIST=ALL,NAME=ERASE,LEVEL=ð1,SOURCE=ð
 ./ NUMBER NEW1=1ð,INCR=1ð
 //ERASE EXEC PGM=IEBUPDTE
 //DD1 DD UNIT=disk,DISP=(OLD,KEEP),VOLUME=SER=111111
 //SYSPRINT DD SYSOUT=A
 ./ REPL LIST=ALL,NAME=LISTPROC
 ./ NUMBER NEW1=1ð,INCR=1ð
 //LIST EXEC PGM=IEBGENER
 //SYSPRINT DD SYSOUT=A
//SYSUT1 DD DISP=SHR,DSN=SYS1.PROCLIB(&MEMBER)
//SYSUT2 DD SYSOUT=A,DCB=(RECFM=F,BLKSIZE=8ð)

 //SYSIN DD DATA
 ./ ENDUP
 /\

The control statements are discussed below:

� SYSUT1 and SYSUT2 DD define the SYS1.PROCLIB data set, which is
assumed to be cataloged.

250 DFSMS/MVS V1R5 Utilities

 IEBUPDTE

� SYSIN DD defines the control data set, which follows in the input stream. The
data set contains the utility control statements and the data to be placed in the
procedure library.

� The ADD function statement indicates that records (data statements) in the
control data set are to be placed in the output. The newly created procedure,
ERASE, is listed in the message data set.

The ADD function will not take place if a member named ERASE already exists
in the new master data set referenced by SYSUT2.

� The first NUMBER detail statement indicates that the new and replacement
procedures are to be assigned sequence numbers. The first record of each pro-
cedure is assigned sequence number 10; the next record is assigned sequence
number 20, and so on.

� The ERASE EXEC statement marks the beginning of the first new procedure.

� The REPL function statement indicates that records (data statements) in the
control data set are to replace an already existing member. The member is
stored in the new master data set referenced by SYSUT2. The REPL function
will only take place if a member named LISTPROC already exists in the old
master data set referenced by SYSUT1.

� The second NUMBER detail statement is a duplicate of the first.

� The LIST EXEC statement marks the beginning of the second new procedure.

� The ENDUP statement marks the end of the SYSIN DD input data.

Example 2: Create a Three-Member Library
In this example, a three-member partitioned library is created. The input data is
contained solely in the control data set.

 //UPDATE JOB ...
 //STEP1 EXEC PGM=IEBUPDTE,PARM=NEW
 //SYSPRINT DD SYSOUT=A
 //SYSUT2 DD DSNAME=OUTLIB,UNIT=disk,DISP=(NEW,CATLG),
 // VOLUME=SER=111112,SPACE=(TRK,(5ð,,1ð)),
 // DCB=(RECFM=F,LRECL=8ð,BLKSIZE=8ð)
 //SYSIN DD DATA
 ./ ADD NAME=MEMB1,LEVEL=ðð,SOURCE=ð,LIST=ALL

(Data statements, sequence numbers in columns 73 through 8ð)

 ./ ADD NAME=MEMB2,LEVEL=ðð,SOURCE=ð,LIST=ALL

(Data statements, sequence numbers in columns 73 through 8ð)

 ./ ADD NAME=MEMB3,LEVEL=ðð,SOURCE=ð,LIST=ALL

(Data statements, sequence numbers in columns 73 through 8ð)

 ./ ENDUP
 /\

The control statements are discussed below:

 IEBUPDTE (Update Data Set) Program 251

 IEBUPDTE

� SYSUT2 DD defines the new partitioned master, OUTLIB. Enough space is
allocated to allow for subsequent modifications without creating a new master
data set.

� SYSIN DD defines the control data set, which follows in the input stream. The
data set contains the utility control statements and the data to be placed as
three members in the output partitioned data set.

� The ADD function statements indicate that subsequent data statements are to
be placed as members in the output partitioned data set. Each ADD function
statement specifies a member name for subsequent data and indicates that the
member and control statement is listed in the message data set.

� The data statements contain the data to be placed in each member of the
output partitioned data set.

� ENDUP signals the end of control data set input.

Because sequence numbers (other than blank numbers) are included within the
data statements, no NUMBER detail statements are included in the example.

Example 3: Create New Library Using SYS1.MACLIB as a Source
In this example, a three-member partitioned data set (NEWMCLIB) is created. The
data set will contain two members, ATTACH and DETACH, copied from an existing
partitioned data set (SYS1.MACLIB), and a new member, EXIT, which is contained
in the control data set.

| //UPDATE JOB ...
| //STEP1 EXEC PGM=IEBUPDTE,PARM=MOD
| //SYSPRINT DD SYSOUT=A
| //SYSUT1 DD DSNAME=SYS1.MACLIB,DISP=SHR
| //SYSUT2 DD DSNAME=DEV.DRIVER3.NEWMCLIB,UNIT=disk,
| // DISP=(NEW,CATLG),SPACE=(TRK,(1ðð,,1ð)),
| // DCB=(RECFM=F,LRECL=8ð,BLKSIZE=4ððð)
| //SYSIN DD DATA
| ./ REPRO NAME=ATTACH,LEVEL=ðð,SOURCE=1,LIST=ALL
| ./ REPRO NAME=DETACH,LEVEL=ðð,SOURCE=1,LIST=ALL
| ./ ADD NAME=EXIT,LEVEL=ðð,SOURCE=1,LIST=ALL
| ./ NUMBER NEW1=1ð,INCR=1ðð

| (Data records for EXIT member)

| ./ ENDUP
| /\

The control statements are discussed below:

� SYSUT1 DD defines the input partitioned data set SYS1.MACLIB, which is
assumed to be cataloged.

| � SYSUT2 DD defines the output partitioned data set
| DEV.DRIVER3,NEWMCLIB. Enough space is allocated to allow for subse-
| quent modifications without creating a new master data set.

� SYSIN DD defines the control data set, which follows in the input stream.

� The REPRO function statements identify the existing input members (ATTACH
and DETACH) to be copied onto the output data set. These members are also
listed in the message data set (because LIST=ALL is specified).

252 DFSMS/MVS V1R5 Utilities

 IEBUPDTE

� The ADD function statement indicates that records (subsequent data state-
ments) are to be placed as members in the output partitioned data set, called
EXIT. The data statements are to be listed in the message data set.

� The NUMBER detail statement assigns sequence numbers to the data state-
ments. (The data statements contain blank sequence numbers in columns 73
through 80.) The first record of the output member is assigned sequence
number 10; subsequent record numbers are increased by 100.

� ENDUP signals the end of SYSIN data.

Note that the three named input members (ATTACH, DETACH, and EXIT) do not
have to be specified in the order of their collating sequence in the old master.

Example 4: Update a Library Member
In this example, a member (MODMEMB) is updated within the space it actually
occupies. Two existing logical records are replaced, and the entire member is
renumbered.

 //UPDATE JOB ...
 //STEP1 EXEC PGM=IEBUPDTE,PARM=MOD
 //SYSPRINT DD SYSOUT=A
 //SYSUT1 DD DSNAME=PDS,UNIT=disk,DISP=(OLD,KEEP),
 // VOLUME=SER=111112
 //SYSIN DD \
 ./ CHANGE NAME=MODMEMB,LIST=ALL,UPDATE=INPLACE
 ./ NUMBER SEQ1=ALL,NEW1=1ð,INCR=5

(Data statement 1, sequence number ðððððð2ð)
(Data statement 2, sequence number ðððððð35)

 /\

The control statements are discussed below:

� SYSUT1 DD defines the partitioned data set that is updated in place. (Note that
the member name need not be specified in the DD statement.)

� SYSIN DD defines the control data set, which follows in the input stream.

� The CHANGE function statement indicates the name of the member to be
updated (MODMEMB) and specifies the UPDATE=INPLACE operation. The
entire member is listed in the message data set. Note that, as renumbering is
being done, and since UPDATE=INPLACE was specified, the listing would
have been provided even if the LIST=ALL parameter had not been specified.
See the LIST parameter for more information.

� The NUMBER detail statement indicates that the entire member is to be renum-
bered, and specifies the first sequence number to be assigned and the incre-
ment value (5) for successive sequence numbers.

� The data statements replace existing logical records having sequence numbers
of 20 and 35.

 IEBUPDTE (Update Data Set) Program 253

 IEBUPDTE

Example 5: Create New Master Data Set and Delete Selected Records
In this example, a new master sequential data set is created from partitioned input
and selected logical records are deleted.

| //UPDATE JOB ...
| //STEP1 EXEC PGM=IEBUPDTE,PARM=MOD
| //SYSPRINT DD SYSOUT=A
| //SYSUT1 DD DSNAME=DCB.PARTDS,DISP=(OLD,KEEP)
| // VOLUME=SER=111112
| //SYSUT2 DD DSNAME=SEQDS,UNIT=tape,LABEL=(2,SL),
| // DISP=(,KEEP),VOLUME=SER=ðð1234,
| // DCB=(RECFM=FB,LRECL=8ð,BLKSIZE=2ððð)
| //SYSIN DD \
| ./ CHANGE NEW=PS,NAME=OLDMEMB1

| (Data statement 1, sequence number ððððð123)

| ./ DELETE SEQ1=223,SEQ2=246

| (Data statement 2, sequence number ððððð224)

| /\

The control statements are discussed below:

� SYSUT1 DD defines the input partitioned data set DCB.PARTDS, which resides
on a disk volume.

� SYSUT2 DD defines the output sequential data set, SEQDS. The data set is
written as the second data set on a tape volume.

� SYSIN DD defines the control data set, which follows in the input stream.

� CHANGE identifies the input member (OLDMEMB1) and indicates that the
output is a sequential data set (NEW=PS).

� The first data statement replaces the logical record whose sequence number is
identical to the sequence number in the data statement (00000123). If no such
logical record exists, the data statement is incorporated in the proper sequence
within the output data set.

� The DELETE detail statement deletes logical records having sequence
numbers from 223 through 246, inclusive.

� The second data statement is inserted in the proper sequence in the output
data set, because no logical record with the sequence number 224 exists (it
was deleted in the previous statement).

Note that only one member can be used as input when converting to sequential
organization.

Example 6: Create and Update a Library Member
In this example, a member of a partitioned data set is created from sequential input
and existing logical records are updated.

254 DFSMS/MVS V1R5 Utilities

 IEBUPDTE

| //UPDATE JOB ...
| //STEP1 EXEC PGM=IEBUPDTE,PARM=MOD
| //SYSPRINT DD SYSOUT=A
| //SYSUT1 DD DSNAME=BROWN.OLDSEQDS,UNIT=tape,
| // DISP=(OLD,KEEP),VOLUME=SER=ðð1234
| //SYSUT2 DD DSNAME=BROWN.NEWPART,UNIT=disk,DISP=(,CATLG),
| // VOLUME=SER=111112,SPACE=(TRK,(1ð,5,5)),
| // DCB=(RECFM=FB,LRECL=8ð,BLKSIZE=4ð8ð)
| //SYSIN DD \
| ./ CHANGE NEW=PO,MEMBER=PARMEM1,LEVEL=ð1,
| ./ SEQFLD=6ð5,COLUMN=4ð,SOURCE=ð

| (Data statement 1, sequence number ððð2ð)

| ./ DELETE SEQ1=22ð,SEQ2=25ð

| (Data statement 2, sequence number ðð23ð)
| (Data statement 3, sequence number ðð26ð)

| ./ ALIAS NAME=MEMB1
| /\

The control statements are discussed below:

| � SYSUT1 DD defines the input sequential data set (BROWN.OLDSEQDS). The
| data set resides on a tape volume.

| � SYSUT2 DD defines the output partitioned data set (BROWN.NEWPART).
| Enough space is allocated to provide for members that may be added in the
| future.

� SYSIN DD defines the control data set, which follows in the input stream.

� The CHANGE function statement identifies the output member (PARMEM1)
and indicates that a conversion from sequential input to partitioned output is
made. The SEQFLD parameter indicates that a 5-byte sequence number is
located in columns 60 through 64 of each data statement. The COLUMN=40
parameter specifies the starting column of a field (within subsequent data state-
ments) from which replacement information is obtained. SOURCE=0 indicates
that the replacement information is provided by you.

� The first data statement is used as replacement data. Columns 40 through 80
of the statement replace columns 40 through 80 of the corresponding logical
record. If no such logical record exists, the entire card image is inserted in the
output data set member.

� The DELETE detail statement deletes all of the logical records having
sequence numbers from 220 through 250.

� The second data statement, whose sequence number falls within the range
specified in the DELETE detail statement above, is incorporated in its entirety
in the output data set member.

� The third data statement, which is beyond the range of the DELETE detail
statement, is treated in the same manner as the first data statement.

� ALIAS assigns the alias name MEMB1 to the output data set member
PARMEM1.

 IEBUPDTE (Update Data Set) Program 255

 IEBUPDTE

Example 7: Insert Records into a Library Member
In this example, a block of three logical records is inserted into an existing member,
and the updated member is placed in the existing partitioned data set.

 //UPDATE JOB ...
 //STEP1 EXEC PGM=IEBUPDTE,PARM=MOD
 //SYSPRINT DD SYSOUT=A
 //SYSUT1 DD DSNAME=PDS,UNIT=disk,DISP=(OLD,KEEP),
 // VOLUME=SER=111112
 //SYSUT2 DD DSNAME=PDS,UNIT=disk,DISP=(OLD,KEEP),
 // VOLUME=SER=111112
 //SYSIN DD \
 ./ CHANGE NAME=RENUM,LIST=ALL,LEVEL=ð1,SOURCE=ð
 ./ NUMBER SEQ1=15,NEW1=2ð,INCR=5,INSERT=YES

(Data statement 1)
(Data statement 2)
(Data statement 3)

 /\

The control statements are discussed below:

� SYSUT1 and SYSUT2 DD define the partitioned data set (PDS).

� SYSIN DD defines the control data set, which follows in the input stream.

� The CHANGE function statement identifies the input member RENUM. The
entire member is listed in the message data set.

� The NUMBER detail statement specifies the insert operation and controls the
renumbering operation as described below.

� The data statements are the logical records to be inserted. (Sequence numbers
are assigned when the data statements are inserted.)

In this example, the existing logical records have sequence numbers 10, 15, 20, 25,
and 30. Sequence numbers are assigned by the NUMBER detail statement, as
follows:

1. Data statement 1 is assigned sequence number 20 (NEW1=20) and inserted
after existing logical record 15 (SEQ1=15).

2. Data statements 2 and 3 are assigned sequence numbers 25 and 30 (INCR=5)
and are inserted after data statement 1.

3. Existing logical records 20, 25, and 30 are assigned sequence numbers 35, 40,
and 45, respectively.

Figure 83 shows existing sequence numbers, data statements inserted, and the
resultant new sequence numbers.

256 DFSMS/MVS V1R5 Utilities

 IEBUPDTE

Figure 83. Example of Reordered Sequence Numbers

Sequence Numbers and Data
Statements Inserted New Sequence Numbers

10 10

15 15

Data statement 1 20

Data statement 2 25

Data statement 3 30

20 35

25 40

30 45

Example 8: Renumber and Insert Records into a Library Member
In this example, two blocks (three logical records per block) are inserted into an
existing member, and the member is placed in the existing partitioned data set. A
portion of the output member is also renumbered.

 //UPDATE JOB ...
 //STEP1 EXEC PGM=IEBUPDTE,PARM=MOD
 //SYSPRINT DD SYSOUT=A
 //SYSUT1 DD DSNAME=PDS,UNIT=disk,DISP=(OLD,KEEP),
 // VOLUME=SER=111112
 //SYSUT2 DD DSNAME=PDS,UNIT=disk,DISP=(OLD,KEEP),
 // VOLUME=SER=111112
 //SYSIN DD \
 ./ CHANGE NAME=RENUM,LIST=ALL,LEVEL=ð1,SOURCE=ð,SEQFLD=(765,783)
 ./ NUMBER SEQ1=AAð15,NEW1=AAð2ð,INCR=5,INSERT=YES

(Data statement 1)
(Data statement 2)
(Data statement 3)

 ./ NUMBER SEQ1=AAð3ð,INSERT=YES

(Data statement 4)
(Data statement 5)
(Data statement 6)
(Data statement 7, sequence number AAð35)

 /\

The control statements are discussed below:

� SYSUT1 and SYSUT2 DD define the partitioned data set PDS.

� SYSIN DD defines the control data set, which follows in the input stream.

� The CHANGE function statement identifies the input member RENUM. The
entire member is listed in the message data set.

� The NUMBER detail statements specify the insert operations (INSERT=YES)
and control the renumbering operation as described below.

 IEBUPDTE (Update Data Set) Program 257

 IEBUPDTE

� Data statements 1, 2, 3, and 4, 5, 6 are the blocks of logical records to be
inserted. Because they contain blank sequence numbers, sequence numbers
are assigned when the data statements are inserted.

� Data statement 7, because it contains a sequence number, stops the insert
operation. The sequence number is identical to the number on the next record
in the old master data set; consequently, data statement 7 will replace the
equally numbered old master record in the output data set.

The existing logical records in this example have sequence numbers AA010,
AA015, AA020, AA025, AA030, AA035, AA040, AA045, AA050, BB010, and
BB015. The insertion and renumbering operations are performed as follows:

1. Data statement 1 is assigned sequence number AA020 (NEW1=AA020) and
inserted after existing logical record AA015 (SEQ1=AA015).

2. Data statements 2 and 3 are assigned sequence numbers AA025 and AA030
(INCR=5) and are inserted after data statement 1.

3. Existing logical records AA020, AA025, and AA030 are assigned sequence
numbers AA035, AA040, and AA045, respectively.

4. Data statement 4 is assigned sequence number AA050 and inserted. (The
SEQ1=AA030 specification in the second NUMBER statement places this data
statement after existing logical record AA030, which has become logical record
AA045.)

5. Data statements 5 and 6 are assigned sequence numbers AA055 and AA060
and are inserted after data statement 4.

6. Existing logical record AA035 is replaced by data statement 7, which is
assigned sequence number AA065.

7. The remaining logical records in the member are renumbered until logical
record BB010 is encountered. Because this record has a sequence number
higher than the next number to be assigned, the renumbering operation is
ended.

Figure 84 shows existing sequence numbers, data statements inserted, and the
new sequence numbers.

Figure 84 (Page 1 of 2). Reordered Sequence Numbers

Sequence Numbers and Data
Statements Inserted New Sequence Numbers

AA010 AA010

AA015 AA015

Data statement 1 AA020

Data statement 2 AA025

Data statement 3 AA030

AA020 AA035

AA025 AA040

AA030 AA045

Data statement 4 AA050

Data statement 5 AA055

258 DFSMS/MVS V1R5 Utilities

 IEBUPDTE

Figure 84 (Page 2 of 2). Reordered Sequence Numbers

Sequence Numbers and Data
Statements Inserted New Sequence Numbers

Data statement 6 AA060

AA035 (Data statement 7) AA065

AA040 AA070

AA045 AA070

AA050 AA075

BB010 BB010

BB015 BB015

Example 9: Create a Sequential Data Set from Card Input
In this example, IEBUPDTE is used to create a sequential data set from card input.
User header and trailer labels, also from the input stream, are placed on this
sequential data set.

 //LABEL JOB ...
//CREATION EXEC PGM=IEBUPDTE,PARM=NEW

 //SYSPRINT DD SYSOUT=A
 //SYSUT2 DD DSNAME=LABEL,VOLUME=SER=123456,UNIT=disk,
 // DISP=(NEW,KEEP),LABEL=(,SUL),SPACE=(TRK,(15,3))
 //SYSIN DD \
 ./ LABEL

 (Header labels)

 ./ ADD LIST=ALL,OUTHDR=ROUTINE1,OUTTLR=ROUTINE2

 (Data records)

 ./ LABEL

 (Trailer labels)

 ./ ENDUP
 /\

The control statements are discussed below:

� SYSUT2 DD defines and allocates space for the output sequential data set,
called LABEL, which resides on a disk volume.

� SYSIN DD defines the control data set, which follows in the input stream. (This
control data set includes the sequential input data set and the user labels,
which are on cards.)

� The first LABEL statement identifies the 80-byte card images in the input
stream which will become user header labels. (They can be modified by the
user's header-label processing routine specified on the ADD function state-
ment.)

� The ADD function statement indicates that the data statements that follow are
placed in the output data set. The newly created data set is listed in the

 IEBUPDTE (Update Data Set) Program 259

 IEBUPDTE

message data set. User output header and output trailer routines are to be
given control before the writing of header and trailer labels.

� The second LABEL statement identifies the 80-byte card images in the input
stream which will become user trailer labels. (They can be modified by the
user's trailer-label processing routine specified on the ADD function statement.)

� ENDUP signals the end of the control data set.

Example 10: Copy Sequential Data Set from One Volume to Another
In this example, IEBUPDTE is used to copy a sequential data set from one DASD
volume to another. User labels are processed by user exit routines.

 //LABELS JOB ...
 //STEP1 EXEC PGM=IEBUPDTE,PARM=(MOD,,INTLRTN)
 //SYSPRINT DD SYSOUT=A
 //SYSUT1 DD DSNAME=OLDMAST,DISP=OLD,LABEL=(,SUL),
 // VOLUME=SER=111111,UNIT=disk
 //SYSUT2 DD DSNAME=NEWMAST,DISP=(NEW,KEEP),LABEL=(,SUL),
 // UNIT=disk,VOLUME=SER=XB182,
 // SPACE=(TRK,(5,1ð))
 //SYSIN DD DSNAME=INPUT,DISP=OLD,LABEL=(,SUL),
 // VOLUME=SER=222222,UNIT=disk
 /\

The control statements are discussed below:

� SYSUT1 DD defines the input sequential data set, called OLDMAST, which
resides on a disk volume.

� SYSUT2 DD defines the output sequential data set, called NEWMAST, which
will reside on a disk volume.

� SYSIN DD defines the control data set. The contents of this disk-resident data
set in this example are:

 ./ REPRO LIST=ALL,INHDR=INHRTN,INTLR=INTRTN, C
 ./ OUTHDR=OUTHRTN,OUTTLR=OUTTRN
 ./ ENDUP

� The REPRO function statement indicates that the existing input sequential data
set is copied to the output data set. This output data set is listed on the
message data set. The user's label processing routines are to be given control
when header or trailer labels are encountered on either the input or the output
data set.

� ENDUP indicates the end of the control data set.

Example 11: Create a New Generation Data Set
In this example, a partitioned generation data set consisting of three members is
used as source data in the creation of a new generation data set. IEBUPDTE is
also used to add a fourth member to the three source members and to number the
new member. The resultant data set is cataloged as a new generation data set.

260 DFSMS/MVS V1R5 Utilities

 IEBUPDTE

 //NEWGDS JOB ...
 //STEP1 EXEC PGM=IEBUPDTE,PARM=MOD
 //SYSPRINT DD SYSOUT=A
 //SYSUT1 DD DSNAME=A.B.C(ð),DISP=OLD
 //SYSUT2 DD DSNAME=A.B.C(+1),DISP=(,CATLG),UNIT=disk,
 // VOLUME=SER=111111,SPACE=(TRK,(1ðð,1ð,1ð)),
 // DCB=(RECFM=FB,LRECL=8ð,BLKSIZE=8ðð)
 //SYSIN DD DATA
 ./ REPRO NAME=MEM1,LEVEL=ðð,SOURCE=ð,LIST=ALL
 ./ REPRO NAME=MEM2,LEVEL=ðð,SOURCE=ð,LIST=ALL
 ./ REPRO NAME=MEM3,LEVEL=ðð,SOURCE=ð,LIST=ALL
 ./ ADD NAME=MEM4,LEVEL=ðð,SOURCE=ð,LIST=ALL
 ./ NUMBER NEW1=1ð,INCR=5

(Data records comprising MEM4)

 ./ ENDUP
 /\

The control statements are discussed below:

� SYSUT1 DD defines the latest generation data set, which is used as source
data.

� SYSUT2 DD defines the new generation data set, which is created from the
source generation data set and from an additional member included as input
and data.

� SYSIN DD defines the control data set, which follows in the input stream.

� The REPRO function statements reproduce the named source members in the
output generation data set.

� The ADD function statement specifies that the data records following the input
stream be included as MEM4.

� The NUMBER detail statement indicates that the new member is to have
sequence numbers assigned in columns 73 through 80. The first record is
assigned sequence number 10. The sequence number of each successive
record is increased by 5.

� ENDUP signals the end of input card data.

This example assumes that a model data set control block (DSCB) exists on the
catalog volume on which the generation data group index was built.

 IEBUPDTE (Update Data Set) Program 261

 IEBUPDTE

262 DFSMS/MVS V1R5 Utilities

 IEHATLAS Program

| The IEHATLAS program is no longer distributed. Use Device Support Facilities
| (ICKDSF) instead.

 Copyright IBM Corp. 1979, 1999 263

264 DFSMS/MVS V1R5 Utilities

 IEHINITT

IEHINITT (Initialize Tape) Program

| IEHINITT is a system utility used to place standard volume label sets onto any
| number of magnetic tapes mounted on one or more tape units. They can be
| ISO/ANSI Version 3 or ISO/ANSI Version 4 volume label sets writtenin ASCII
| (American Standard Code for Information Interchange) or IBM standard labels
| written in EBCDIC.

| The U.S. government followed Federal Information Processing Standard (FIPS) 79,
| dated October 17, 1980. It adopted the ISO/ANSI Version 3 standard as a Federal
| Standard. Later, it withdrew FIPS 79 and did not replace it.

| IEHINITT is an APF-authorized program. This means that if another program calls
| it, that program mus also be APF-authorized. To protect system integrity, your
| program must follow the sytem integrity requirements described in OS/390 MVS
| Assembler Services Guide.

Because IEHINITT can overwrite previously labeled tapes regardless of expiration
date and security protection, IEHINITT should be moved into an authorized
RACF-protected private library and deleted from SYS1.LINKLIB. To further protect
against overwriting the wrong tape, IEHINITT asks the operator to verify each tape

| mount in a non-library environment. SAF/RACF is invoked for authorization proc-
| essing in a library environment.

Each volume label set created by the program contains:

� A standard volume label with a serial number you specify, owner identification,
| and a blank security byte. ISO/ANSI

Version 3 and Version 4 labels may contain an access code other than an
ASCII space by using the ACCESS keyword. A label conforming to the
ISO/ANSI Version 3 standard will be created if a Version 3 label is requested.
A label conforming to the Version 4 stadard will be constructed if a Version 4
label is requested.

| A complete description of IBM standard volume labels and Version 3 and
| Version 4 volume labels can be found in DFSMS/MVS Using Magnetic Tapes.

� An 80-byte dummy header label. For IBM standard labels, this record consists
| of the characters “HDR1” followed by character zeros. For Version 3 or Version
| 4 labels, this record consists of the characters “HDR1” followed by character

zeros in the remaining positions, with the exception of:

– Position 54, which will contain an ASCII space

– A “1” in the file section, file sequence, and generation number fields

– A leading space in the creation and expiration date fields;

– A system code of “IBMZLA,” followed by 13 spaces, and which identifies
the operating system creating the label.

� A tape mark.

When a labeled tape is subsequently used as a receiving volume:

1. The tape mark created by IEHINITT is overwritten.

 Copyright IBM Corp. 1979, 1999 265

 IEHINITT

2. The dummy HDR1 record created by IEHINITT is filled in with operating system
data and device-dependent information.

3. A HDR2 record, containing data set characteristics, is created.

4. User header labels are written if exits to user label routines are provided.

5. A tape mark is written.

6. Data is placed on the receiving volume.

Note for Version 3 and Version 4 Tape Labels:

For Version 3 there is no accessibility code checking done during IEHINITT proc-
essing, other than checking for uppercase A through Z in the ACCESS keyword.
Therefore, it is possible to create a tape with a volume access code that the
receiving operating system will not recognize. In such a situation, the tape would
have to be reinitialized to contain an acceptable access code.

The set of valid Version 3 characters is:

upper case A--Z, numeric ð--9, and the special characters
| " % & ' () \ + , - . / : ; < = > ? space

The set of valid Version 4 characters is:

upper case A--Z, numeric ð--9, and the special characters
| " % & ' () \ + , - . / : ; < = > ? _ space

The only difference between the two lists of special characters is the _ (under-
score).

If a Version 3 or Version 4 volume is initialized only with IEHINITT, the labels
produced do not frame an empty (null) data set as required for interchange. In
order to produce label symmetry described by the ISO/ANSI standards, at least a
minimal Open/Close sequence must be processed. For example, a volume initial-
ized previously with IEHINITT will result in label symmetry if the data set utility
IEBGENER is used before the volume leaves the system for interchange, as
follows:

 //STEP1 EXEC PGM=IEBGENER
 //SYSPRINT DD DUMMY
 //SYSUT1 DD DUMMY,DCB=(RECFM=F,BLKSIZE=8ð,LRECL=8ð)
 //SYSUT2 DD DSN=DUMMY,UNIT=(tape,,DEFER),LABEL=(,AL),
 // DCB=(RECFM=F,BLKSIZE=8ð,LRECL=8ð)

//SYSIN DD DUMMY

Figure 85 on page 267 shows an IBM standard label group after a volume is used
to receive data. For a discussion of volume labels, see DFSMS/MVS Using Mag-
netic Tapes .

266 DFSMS/MVS V1R5 Utilities

 IEHINITT

Initial volume label

Tapemark

Data

User header labels
(optional up to 8)

HDR1

HDR2

Figure 85. IBM Standard Label Group after Volume Receives Data

Placing a Standard Label Set on Magnetic Tape
| IEHINITT can be used to write BCD labels on 7-track tape volumes and EBCDIC or
| ASCII (ISO/ANSI format) labels on 9, 18, 36, and 128 track volumes. Any number
| of tape cartridges or tape volumes can be labeled in a single execution of
| IEHINITT.

| IEHINITT is supported in all IBM 3494 and 3495 Automated Tape Library
| Dataserver environments, as well as the 3495-M10 environment. Special consider-
| ations apply when using IEHINITT in the 3494 or 3495 Automated Tape Library
| Dataserver. See “Control” on page 269 for details.

| Multiple tape volumes initialized via a single INITT command are labeled in sequen-
| tial order by specifying a serial number to be written on the first tape volume. The
| serial number must be specified as six numeric characters, and is incremented by 1
| for each successive tape volume. If only one tape volume is to be labeled, the
| specified serial number can be either numeric or alphanumeric.

You can provide additional information, for example:

 � owner name
� rewind or unload specifications

| � format
 � access code

You must supply all tapes to be labeled, and must include with each job request
| explicit instructions to the operator about where each tape is to be mounted. For

 IEHINITT (Initialize Tape) Program 267

 IEHINITT

| tapes residing in a Tape Library Dataserver, see “Tape Library Dataserver
| Considerations” on page 270.

IEHINITT writes 7-track tape labels in even parity (translator on, converter off).

Previously labeled tapes can be overwritten with new labels regardless of expiration
date and security protection. SAF/RACF is invoked to determine the proper level of
access to a tape volume for drives in a Tape Library Dataserver.

If errors are encountered while attempting to label a tape, the tape is left unlabeled.
IEHINITT tries to label any tapes remaining to be processed.

For information on creating routines to write standard or nonstandard labels, see
DFSMS/MVS Using Magnetic Tapes.

 Using DFSMSrmm
DFSMSrmm is recommended instead of IEHINITT for labeling tapes that reside
both inside and outside IBM 3495 Tape Library Dataservers for the following
reasons:

1. You can label a set of volumes with DFSMSrmm.

2. DFSMSrmm ensures that the data sets on the volume have expired.

3. DFSMSrmm validates that the correct volume is mounted before creating the
volume label.

4. DFSMSrmm can track that a volume needs to be labelled and can automate
tape labeling using the information in its control data set.

5. DFSMSrmm also provides facilities for erasing the data on a tape when it
expires.

Input and Output
IEHINITT uses as input a control data set that contains the utility control state-
ments. IEHINITT produces an output data set that contains:

� Utility program identification
� Initial volume label information for each successfully labeled tape volume
� Contents of utility control statements
� Any error messages

| IEHINITT supports the use of uncaptured UCB addresses. Capturing and uncap-
| turing is a process used by the operating system to convert 31 bit, above the 16M
| line addresses into 24 bit, below the line addresses. There are no special consider-
| ations that need to be made by the user if devices are allocated via JCL, the
| normal method of invoking IEHINITT. However, user written applications can
| dynamically allocate devices without capturing them and pass them to IEHINITT via
| an established API.

| IEHINITT sets return codes in register 15. See Appendix A, “Invoking Utility Pro-
| grams from an Application Program” on page 369 for IEHINITT return codes.

268 DFSMS/MVS V1R5 Utilities

 IEHINITT

 Control
IEHINITT is controlled by job and utility control statements. The job control state-
ments are used to process or load IEHINITT and to define data sets used and
produced by IEHINITT. The utility control statement is used to specify applicable
label information.

Job Control Statements
Figure 86 shows the job control statements for IEHINITT.

Figure 86. IEHINITT Job Control Statements

Statement Use

JOB Starts the job.

EXEC Specifies the program name (PGM=IEHINITT) or, if the job control
statements reside in a procedure library, the procedure name. The
EXEC statement can include additional parameter information.

SYSPRINT DD Defines a sequential data set for messages.

anyname DD Defines a tape unit to be used in a labeling operation; more than one
tape unit can be identified.

SYSIN DD Defines the control data set. The control data set normally resides in the
input stream; however, it can be defined as a member of a partitioned
data set or PDSE or as a sequential data set outside the input stream.

 EXEC Statement
The EXEC statement can include PARM information that specifies the number of
lines to be printed between headings in the message data set. The EXEC state-
ment can be coded as follows:

where:

PGM=IEHINITT
specifies that IEHINITT is the program you want to run.

PARM='LINECNT=nn'
specifies the number of lines per page to be printed in the SYSPRINT data set.
If PARM is omitted, 60 lines are printed between headings.

If IEHINITT is loaded, the line count option can be passed in a parameter list
that is referred to by the optionaddr subparameter of the LINK or ATTACH
macro instruction. In addition, a beginning page number can be passed in a
6-byte parameter list that is referred to by the hdingaddr subparameter of the
LINK or ATTACH macro instruction. For a discussion of linkage conventions,
refer to Appendix A, “Invoking Utility Programs from an Application Program”
on page 369.

//[stepname] EXEC PGM=IEHINITT
[,PARM='LINECNT=nn']

 IEHINITT (Initialize Tape) Program 269

 IEHINITT

SYSPRINT DD Statement
The SYSPRINT data set must have a logical record length of 121. It must consist
of fixed-length records with an ISO/ANSI control character in the first byte of each
record. Any blocking factor can be specified.

anyname DD Statement
The “anyname” DD statement is entered:

//anyname DD DCB=DEN=x,UNIT=(xxxx,n,DEFER)

The DEN parameter specifies the density at which the labels are written. The UNIT
parameter specifies the device type, number of units to be used for the labeling
operation, and deferred mounting. DEFER must be specified to delay mounting a
tape until IEHINITT is ready to process it. This provides the operator an opportunity
to verify that the correct tape is mounted.

Note: It is recommended that you do not premount tapes. IEHINITT will unload
any pre-mounted tapes it encounters.

See OS/390 MVS JCL Reference for more information on the DEN and UNIT
parameters.

The name “anyname” must be identical to a name specified in a utility control state-
ment to relate the specified units to the utility control statement.

| Tape Library Dataserver Considerations
To run IEHINITT in a library dataserver environment you would use JCL similar to:

//anyname DD UNIT=(,,DEFER),
// VOLUME=SER=volser,
// DISP=(OLD,KEEP)

'anyname' is the name on the INITT utility control statement.

'volser' is the volume serial number of a volume which meets all of the following
requirements:

� The volume resides in the tape library containing the volumes to be initialized.

� The volume has the PRIVATE use attribute.

| � The volume is recorded in the tape recording technology - either 18, 36, or
| 128-track - that is to be used in labeling the tapes.

� The volume does not have the read compatible special attribute.

| � The volume is NOT one of those that will be labeled.

Note: No unit name is required, provided that 'volser' is a library-resident volume.

| Additional considerations for running IEHINITT in an Automated Tape Library
| Dataserver are:

| � Both Private and Scratch volumes can be initialized with this utility. SAF/RACF
| is used in this context to ensure the proper level of authorization to the volumes
| is held.

| � Of special note is that all volumes in a library are accessible to the task exe-
| cuting IEHINITT regardless of the existence of a TCDB record for any given
| volume on the system executing the IEHINITT job. For example, a Tape Library

270 DFSMS/MVS V1R5 Utilities

 IEHINITT

| Dataserver can be shared by multiple hosts with only certain volumes in the
| Tape Library defined to any given host. An IEHINITT job running on any one of
| the hosts that can allocate to an appropriate device in the Tape Library will be
| able to mount and initialize any compatible volume in that Library (assuming
| proper SAF/RACF authorization levels obtain), whether or not a TCDB record
| for that volume exists on the host from which the IEHINITT job is being run.

| � Message IEC701D, the normal WTOR permission message issued to the
| tape/operator's console does not appear on the console when processing on
| drives in an Automated Tape Dataserver.

SYSIN DD Statement
| The SYSIN data set must have a logical record length of 80. Any blocking factor up
| to a block size of 32720 can be specified .

Utility Control Statement
IEHINITT uses the utility control statement INITT to provide control information for a
labeling operation. Continuation requirements for utility control statements are
described in “Continuing Utility Control Statements” on page 8.

Any number of INITT utility control statements can be included for a given exe-
cution of the program. Each INITT statement must be labeled with a ddname that
identifies a DD statement in the input stream.

Figure 87 shows a printout of a message data set including the INITT statement
and initial volume label information. In this example, one INITT statement was used
to place serial numbers 001122 and 001123 on two standard label tape volumes.
VOL1001122 and VOL1001123 are interpreted as follows:

� VOL1 indicates that an initial volume label was successfully written to a tape
volume.

� 001122 and 001123 are the serial numbers that were written onto the volumes.

� A blank space following the serial number represents the Volume Security field,
which is not used during OPEN/CLOSE/EOV processing on a standard label
tape.

No errors occurred during processing.

SYSTEM SUPPORT UTILITIES IEHINITT

 ALL INITT SER=ðð1122,NUMBTAPE=2,OWNER='P.T.BROWN',DISP=REWIND

 VOL1ðð1122 P.T.BROWN
 VOL1ðð1123 P.T.BROWN

Figure 87. Printout of INITT Statement Specifications and Initial Volume Label Information

The syntax of the INITT statement is:

 IEHINITT (Initialize Tape) Program 271

 IEHINITT

where:

ddname
specifies the name that is identical to the ddname in the name field of the DD
statement defining a tape unit(s). This name must begin in column 1 of the
record which contains the INITT statement.

SER=serial number
specifies the volume serial number of the first or only tape to be labeled.

| Specify up to six characters. For IBM standard labeled (SL) tapes, the serial
number cannot contain blanks, commas, apostrophes, equal signs, or special
characters other than periods, hyphens, dollar signs, pound signs, and at signs
('@'). ISO/ANSI labeled tapes (AL) may contain any valid ISO/ANSI 'a' type
character as described under the OWNER keyword. However, if any nonalpha-
numeric character (including a period or a hyphen) is present, delimiting apos-
trophes must be included.

You cannot use a blank as the first character in a volume serial number.

A specified serial number is increased by one for each additional tape to be
labeled. (Serial number 999999 is increased to 000000.) When processing mul-
tiple tapes, the volume serial numbers must be all numeric.

DISP={REWIND|UNLOAD }
| specifies if a tape is to be rewound or rewound and unloaded. Tapes in a Tape
| Library Dataserver are unconditionally unloaded regardless of the specification
| for this parameter. These values can be coded:

REWIND
specifies that a tape is to be rewound (but not unloaded) after the label has
been written.

UNLOAD
specifies that a tape is to be rewound and unloaded after the label has
been written. This is the default.

OWNER='name'
specifies the owner's name or similar identification. The information is specified
as character constants, and can be up to 10 bytes in length for EBCDIC and
BCD volume labels, or up to 14 bytes in length for volume labels written in
ASCII. The delimiting apostrophes must be present if blanks, commas, apostro-
phes, equal signs, or other special characters (except periods or hyphens) are
included. The set of valid ISO/ANSI 'a' type characters for ASCII tapes is as
follows: upper case A-Z, numeric 0-9, and special characters
!*"%&'()*+,-./:;<=>?. The set of valid EBCDIC characters is as follows: upper-
case A-Z, numeric 0-9, and special characters ¢ . < >(+ ¦(X'6A') |(X'4F') ' &
! $ *) ; - \ / , % _ ? ′ : # @ ' = " ˜ { } \ .

If an apostrophe is included within the OWNER name field, it must be written
| as two consecutive apostrophes. The OWNER keyword can be specified for

ddname INITT SER=serial number
[,DISP={REWIND|UNLOAD }]
[,OWNER='name']
[,NUMBTAPE={ n|1}]
[,LABTYPE=AL]

| [,VERSION={3|4 }]
[,ACCESS=c]

272 DFSMS/MVS V1R5 Utilities

 IEHINITT

| Version 3 or Version 4 tapes. If Version 4 is specified, any ISO/ANSI 'a' type
| character can be used.

NUMBTAPE={ n|1}
specifies the number of tapes to be labeled according to the specifications
made in this control statement. The value n represents a number from 1 to 255.
If more than one tape is specified, the volume serial number of the first tape
must be numeric.

LABTYPE=AL
| When LABTYPE=AL is specified in the INITT statement, IEHINITT initializes
| tapes to conform to the Version 3 standard or the Version 4 standard as speci-
| fied in the VERSION keyword. The format of the VERSION keyword follows.

| Default: The tape is written in EBCDIC in IBM standard format for tape car-
| tridges or 9-track tape volumes and in BCD for 7-track tape volumes.

| VERSION={3|4}
| When LABTYPE=AL is specified, the VERSION keyword determines if the
| format will be Version 3 or Version 4.

| VERSION 3
| Initializes the tape to be Version 3

| VERSION 4
| Initializes the tape to be Version 4

| The volume label (VOL 1) is written the same for Version 3 and Version 4 with
| one exception. Field "Label Standard Version" will be 3 for Version 3 and 4 for
| Version 4. There will be no difference in the initialization of the header labels.

| Default: If this keyward is specified, that value is used. If not, the installation
| version level in the DEVSUPxx PARMLIB member is used. If that is not speci-
| fied, Version 3 is the default.

ACCESS=c
| specifies the Version 3 and Version 4 volume accessibility code. Version 3 valid
| values for c are uppercase A through Z only. The default value is a blank char-
| acter, indicating unlimited access to the volume. For Version 3, you cannot
| specify a blank character for the access code; it must be allowed to default.
| Version 4 valid values are any ISO/ANSI 'a' type characters as listed in 272.

| The Volume Access installation exit routine must be modified to allow subse-
| quent use of the volume if ACCESS is specified. For further information about
| volume accessibility and ISO/ANSI installation exits, see DFSMS/MVS Using
| Magnetic Tapes.

| You must specify LABTYPE=AL and VERSION if you spcify ACCESS.

| The ACCESS keyword can be specified for Version 3 or Version 4. If Version 4
| is specified, the keyword can be any ISO/ANSI 'a' type character.

 IEHINITT Examples
The following examples illustrate some of the uses of IEHINITT. Figure 88 can be
used as a quick-reference guide to IEHINITT examples. The numbers in the
“Example” column refer to examples that follow.

 IEHINITT (Initialize Tape) Program 273

 IEHINITT

Figure 88. IEHINITT Example Directory

Operation Comments Example

LABEL Three 9-track tapes are to be labeled. 1

LABEL A 9-track tape is to be labeled in ISO/ANSI. 2

LABEL Two groups of 9-track tape volumes are to be labeled. 3

LABEL 9-track tape volumes are to be labeled. Sequence numbers are to be incremented by
10.

4

LABEL Three 9-track tape volumes are to be labeled. An alphanumeric label is to be placed
on a tape volume; numeric labels are placed on the remaining two tape volumes.

5

LABEL Two 9-track tape volumes are to be labeled. The first volume is labeled at a density of
6250 bpi; the second at a density of 1600 bpi.

6

LABEL A 9-track tape volume is labeled in ISO/ANSI format with a nonblank access code. 7

Examples that use tape in place of actual device numbers must be changed before
use. The actual device numbers depend on how your installation has defined the
devices to your system.

Example 1: Write EBCDIC Labels on Three Tapes
In this example, serial numbers 001234, 001235 and 001236 are placed on three
tape volumes. The labels are written in EBCDIC at 800 bits per inch. Each volume
labeled is mounted, when it is required, on a single 9-track tape unit.

 //LABEL1 JOB ...
 //STEP1 EXEC PGM=IEHINITT
 //SYSPRINT DD SYSOUT=A
 //LABEL DD DCB=DEN=2,UNIT=(tape,1,DEFER)
 //SYSIN DD \
 LABEL INITT SER=ðð1234,NUMBTAPE=3
 /\

The control statements are discussed below:

� LABEL DD defines the tape unit used in the labeling operation.

� SYSIN DD defines the control data set, which follows in the input stream.

� LABEL INITT specifies the number of tapes to be labeled (3), beginning with
001234.

Example 2: Write an ISO/ANSI Label on a Tape
In this example, serial number 001001 is placed on one ISO/ANSI tape volume; the
label is written at 800 bits per inch. The volume labeled is mounted, when it is
required, on a 9-track tape unit.

 //LABEL2 JOB ...
 //STEP1 EXEC PGM=IEHINITT
 //SYSPRINT DD SYSOUT=A
 //ASCIILAB DD DCB=DEN=2,UNIT=(tape,1,DEFER)
 //SYSIN DD \
ASCIILAB INITT SER=ðð1ðð1,OWNER='SAM A. BROWN',LABTYPE=AL

 /\

The control statements are discussed below:

274 DFSMS/MVS V1R5 Utilities

 IEHINITT

� ASCIILAB DD defines the tape volume to be used in the labeling operation.

� SYSIN DD defines the control data set, which follows in the input stream.

� ASCIILAB INITT specifies the serial number, owner ID and label type for the
| volume.Because the VERSION keyword was not specified, the ISO/ANSI tape
| will be created based on what is specified in the DEVSUPxx parmlib or as a
| version 3 by default.

Example 3: Place Two Groups of Serial Numbers on Six Tape
Volumes

In this example, two groups of serial numbers (001234, 001235, 001236, and
001334, 001335, 001336) are placed on six tape volumes. The labels are written in
EBCDIC at 800 bits per inch. Each volume labeled is mounted, when it is required,
on a single 9-track tape unit.

 //LABEL3 JOB ...
 //STEP1 EXEC PGM=IEHINITT
 //SYSPRINT DD SYSOUT=A
 //LABEL DD DCB=DEN=2,UNIT=(tape,1,DEFER)
 //SYSIN DD \
LABEL INITT SER=ðð1234,NUMBTAPE=3
LABEL INITT SER=ðð1334,NUMBTAPE=3

 /\

The control statements are discussed below:

� LABEL DD defines the tape unit to be used in the labeling operation.

� SYSIN DD defines the control data set, which follows in the input stream.

� LABEL INITT defines the two groups of serial numbers to be put on six tape
volumes.

Example 4: Place Serial Number on Eight Tape Volumes
In this example, serial numbers 001234, 001244, 001254, 001264, 001274, and so
forth, are placed on eight tape volumes. The labels are written in EBCDIC at 800
bits per inch. Each volume labeled is mounted, when it is required, on one of four
9-track tape units.

 //LABEL4 JOB ...
 //STEP1 EXEC PGM=IEHINITT
 //SYSPRINT DD SYSOUT=A
 //LABEL DD DCB=DEN=2,UNIT=(tape,4,DEFER)
 //SYSIN DD \
LABEL INITT SER=ðð1234
LABEL INITT SER=ðð1244
LABEL INITT SER=ðð1254
LABEL INITT SER=ðð1264
LABEL INITT SER=ðð1274
LABEL INITT SER=ðð1284
LABEL INITT SER=ðð1294
LABEL INITT SER=ðð13ð4

 /\

The control statements are discussed below:

� LABEL DD defines the tape unit used in the labeling operation.

 IEHINITT (Initialize Tape) Program 275

 IEHINITT

� SYSIN DD defines the control data set, which follows in the input stream.

� The LABEL INITT statements define the tapes to be labeled by volume serial
number.

Example 5: Write EBCDIC Labels in Different Densities
In this example, serial number TAPE1 is placed on a tape volume, and serial
numbers 001234 and 001235 are placed on two tape volumes. The labels are
written in EBCDIC at 800 and 1600 bits per inch, respectively.

 //LABEL5 JOB ...
 //STEP1 EXEC PGM=IEHINITT
 //SYSPRINT DD SYSOUT=A
 //LABEL1 DD DCB=DEN=2,UNIT=(tape,1,DEFER)
 //LABEL2 DD DCB=DEN=3,UNIT=(tape,1,DEFER)
 //SYSIN DD \
 LABEL1 INITT SER=TAPE1
 LABEL2 INITT SER=ðð1234,NUMBTAPE=2
 /\

The control statements are discussed below:

� LABEL1 DD and LABEL2 DD define two tape volumes to be used in the
labeling operation.

� SYSIN DD defines the control data set, which follows in the input stream.

� LABEL1 INITT places the serial number TAPE1 on the tape volume defined in
LABEL1 DD. LABEL2 INITT places the serial numbers 001234 and 001235 on
the tape volume defined in LABEL2 DD.

Example 6: Write Serial Numbers on Tape Volumes at Two Densities
In this example, the serial number 006250 is written in EBCDIC on a tape volume
at a density of 6250 bpi, and the serial number 001600 is written in EBCDIC on a
second volume at a density of 1600 bpi.

 //LABEL6 JOB ...
 //STEP1 EXEC PGM=IEHINITT
 //SYSPRINT DD SYSOUT=A
 //DDFIRST DD DCB=DEN=4,UNIT=(tape,1,DEFER)
 //DDSECOND DD DCB=DEN=3,UNIT=(tape,1,DEFER)
 //SYSIN DD \
 DDFIRST INITT SER=ðð625ð
 DDSECOND INITT SER=ðð16ðð
 /\

The control statements are discussed below:

� DDFIRST DD defines the first tape volume to be used.

� DDSECOND DD defines the second tape volume to be used.

� SYSIN DD defines the control data set, which follows in the input stream.

� DDFIRST INITT writes the serial number 006250 on the volume defined in
DDFIRST DD. DDSECOND INITT writes the serial number 001600 on the
volume defined in DDSECOND DD.

276 DFSMS/MVS V1R5 Utilities

 IEHINITT

Example 7: Write an ISO/ANSI Label with an Access Code
In this example, an ISO/ANSI (AL) labeled tape is created with a nonblank access
code. The volume serial number is TAPE01.

 //LABEL7 JOB ...
 //STEP1 EXEC PGM=IEHINITT
 //SYSPRINT DD SYSOUT=A
 //LABEL DD UNIT=(tape,1,DEFER),DCB=DEN=4
 //SYSIN DD \
 LABEL INITT SER=TAPEð1,OWNER=TAPOWNER,LABTYPE=AL,ACCESS=A
 /\

The control statements are discussed below:

� LABEL DD defines the device on which the tape is mounted.

� SYSIN DD defines the control data set, which follows in the input stream.

� The INITT statement creates an ISO/ANSI label for the tape with volume serial
number TAPE01, owned by TAPOWNER. The ACCESS code is specified as
“A,” and the operating system that receives this volume must be able to recog-
nize the “A” in order for the volume to be accepted.

 IEHINITT (Initialize Tape) Program 277

 IEHINITT

278 DFSMS/MVS V1R5 Utilities

 IEHLIST

IEHLIST (List System Data) Program

IEHLIST is a system utility used to list entries in an CVOL, entries in the directory
of one or more partitioned data sets or PDSEs, or entries in an indexed or non-
indexed volume table of contents. Any number of listings can be requested in a
single execution of the program. For an example of a VTOC listing produced by
IEHLIST and a detailed explanation of the fields in the listing, see Appendix D,
“IEHLIST VTOC Listing” on page 399.

Listing CVOL Entries
IEHLIST lists all CVOL (SYSCTLG data set) entries that are part of the structure of
a fully qualified data set name. Figure 89 shows an index structure for which
IEHLIST lists fully qualified names A.B.D.W, A.B.D.X, A.B.E.Y, and A.B.E.Z.
Because A.C.F does not represent a cataloged data set (that is, the lowest level of
qualification has been deleted), it is not a fully qualified name, and it is not listed.

Figure 89. Index Structure–Listed by IEHLIST

IEHLIST will not list integrated catalog facility or VSAM catalogs. To list integrated
catalog facility or VSAM catalogs, use access method services. For more informa-
tion, see DFSMS/MVS Access Method Services for ICF.

Listing a Partitioned Data Set or PDSE Directory
IEHLIST can list up to 10 partitioned data set or PDSE directories at a time.

The directory of a partitioned data set is composed of variable-length records
blocked into 256-byte blocks. Each directory block can contain one or more entries
that reflect member or alias names and other attributes of the partitioned members.
IEHLIST can list these blocks in edited and unedited format.

The directory of a PDSE, when listed, will have the same format as the directory of
a partitioned data set.

 Copyright IBM Corp. 1979, 1999 279

 IEHLIST

 Edited Format
The edited format of a partitioned data set directory is meant to be used with
module libraries. Most of the information given in an edited listing is meaningful
only for load modules.

If you request an edited listing of a partitioned data set or PDSE whose members
are not load modules, you will get an edited listing. In that case, the listing will
contain information about your data set that will not necessarily be correct. Only
request an edited listing of a data set whose members are load modules.

When you request an edited format of a module library, IEHLIST provides the fol-
lowing information:

 � Member name
 � Entry point
� Relative address of start of member
� Relative address of start of text
� Contiguous virtual storage requirements
� Length of first block of text
� Origin of first block of text
� System status indicators
� Linkage editor attributes
� APF authorization required

 � Other information.

Figure 90 shows an edited entry for a partitioned member, LOADMOD. The entry is
shown as it is listed by the IEHLIST program. Please note, however, that this figure
is only an example of a listing of a partitioned data set or PDSE directory. Your
actual edited listing produced by the IEHLIST program may differ.

OTHER INFORMATION INDEX
SCATTER FORMAT SCRT=SCATTER/TRANSLATION TABLE TTR IN HEX, LEN OF SCTR LIST IN DEC, LEN OF TRANS TABLE IN DEC,

ESDID OF FIRST TEXT RCD IN DEC, ESDID OF CSECT CONTAINING ENTRY POINT IN DEC

OVERLAY FORMAT ONLY=NOTE LIST RCD TTR IN HEX, NUMBER OF ENTRIES IN NOTE LIST RCD IN DEC

ALIAS NAMES ALIAS MEMBER NAMES WILL BE FOLLOWED BY AN ASTERISK IN THE PDS FORMAT LISTING

 ATTRIBUTE INDEX

BIT ON OFF BIT ON OFF BIT ON OFF BIT ON OFF

ð RENT NOT RENT 4 OL NOT OL 8 NOT DC DC 12 NOT EDIT EDIT
1 REUS NOT REUS 5 SCTR BLOCK 9 ZERO ORG NOT ZERO 13 SYMS NO SYMS
2 ONLY NOT ONLY 6 EXEC NOT EXEC 1ð EP ZERO NOT ZERO 14 F LEVEL E LEVEL
3 TEST TEST 7 1 TXT MULTI RCD 11 NO RLD RLD 15 REFR NOT REFR

MEMBER ENTRY ATTR REL ADDR-HEX CONTIG LEN 1ST ORG 1ST SST VS AUTH OTHER
NAME PT-HEX HEX BEGIN 1ST TXT STOR-DEC TXT-DEC TXT-HEX INFO ATTR REQ REQ INFORMATION

LOADMOD ðððððð ð6E2 ððððð4 ððð2ðF ððð166248 ð927 ABSENT 88ðððð NO SCTR=ðððððð
 ðð484,ð1ð84,32,32

OF THE ðððð2 DIRECTORY BLOCKS ALLOCATED TO THIS PDS, ðððð1 ARE(IS) COMPLETELY UNUSED

Figure 90. Sample of an Edited Partitioned Directory Entry

Before printing the directory entries on the first page, an index is printed explaining
the asterisk (*), if any, following a member name, the attributes (fields 3 and 10),
and other information (field 12). Under OTHER INFORMATION INDEX, scatter and

280 DFSMS/MVS V1R5 Utilities

 IEHLIST

overlay format data is described positionally as it appears in the listing; under the
ATTRIBUTE INDEX, the meaning of each attribute bit is explained. There is no
index for the VS ATTR field. The data displayed in this field is from the PDSFTBO
field in the PDS directory.

Each directory entry occupies one printed line, except when the member name is
an alias and the main member name and associated entry point appear in the user
data field. When this occurs, two lines are used and every alias is followed by an
asterisk. If the main member is renamed, the old member name will still be in the
alias directory entry and consequently printed on the second line.

Unedited (Dump) Format
The unedited formatted listing produced by IEHLIST can be used to list the directo-
ries of any type of partitioned data set or PDSE. The directories of partitioned data
sets or PDSEs whose members were not produced by the linkage editor are best
listed using the unedited format. In an unedited listing, each member is listed sepa-
rately and in hexadecimal.

Figure 91 shows the format of an unedited listing of a three-member partitioned
data set or PDSE directory. Please note, however, that the figure displays only an
example of an unedited formatted listing produced by IEHLIST program. Your
actual unedited listing by IEHLIST program may differ.

Note: A listing of a partitioned data set or PDSE directory organized as shown in
Figure 91 can also be obtained by using IEBPTPCH (see “IEBPTPCH
(Print-Punch) Program” on page 213).

MEMBERS TTRC VARIABLE USER DATA ---(USER DATA AND TTRC ARE IN HEX)
MEMBER1 ððð915ðF ð1ðððððððð 89135Fðð89 135F1ð13ðð 5Cðð5Cðððð D1C1D9C5C4
MEMBER2 ðððEð1ðF ð1ðððð18ðð 92217Fðð92 217F1639ðð 13ðð13ðððð C9C2D4E4E2
MEMBER3 ðððDðBðF ð1ðððððððð 91194Fðð91 194F1251ðð 11ðð11ðððð D1C1D9C5C4

Figure 91. Format of an Unedited Listing of a Partitioned Data Set or PDSE Directory. Note
that there are five bytes printed in each group of hexadecimal characters.

To correctly interpret user data information, you must know the format of the parti-
tioned entry. The formats of directory entries are discussed in DFSMS/MVS Using
Data Sets.

Listing a Volume Table of Contents
IEHLIST can be used to list, partially or completely, entries in a specified volume
table of contents (VTOC), whether indexed or non-indexed. The program lists the
contents of selected data set control blocks (DSCBs) in edited or unedited form.

For more information on indexed VTOCs see DFSMS/MVS DFSMSdfp Advanced
Services.

 IEHLIST (List System Data) Program 281

 IEHLIST

 Edited Format
Two edited formats are available.

First Edited Format
The first edited format is a comprehensive listing of the DSCBs in the VTOC. It
provides the status and attributes of the volume, and describes in depth the data
sets residing on the volume. This listing includes:

� Logical record length and block size

� Initial and secondary allocations

� Upper and lower limits of extents

� Alternate track information

� Available space information, including totals of unallocated cylinders, unallo-
cated tracks, and unallocated (Format 0) DSCBs

� Option codes (printed as two hexadecimal digits)

 � Record formats

 � SMS indicators

The first DSCB on your listing is always a VTOC (Format 4) DSCB. It defines the
scope of the VTOC itself; that is, it contains information about the VTOC and the
volume rather than the data sets referenced by the VTOC.

Indexed VTOCs: For indexed VTOCs, there are two types of formatted listings.
These types are specified using the INDEXDSN parameter.

If INDEXDSN is omitted, the listing contains:

� A statement of the number of levels in the index, if enabled.

� A formatted Format 4 DSCB.

� Formatted data set entries in alphanumeric order (Format 1 DSCB physical-
sequential order if the index is disabled).

� Formatted freespace information.

� Totals of unallocated cylinders, unallocated tracks, unallocated (Format 0)
DSCBs, and unallocated VIRs.

If INDEXDSN=name is specified, the listing contains, in addition to the items above:

� Formatted space and allocation information.

� Allocated VTOC index entry records, formatted and listed by level and key
sequence within level (in physical-sequential order if the index is disabled).

� If the VTOC index is disabled, a statement is included to this effect.

Note: For a sample of the first edited format illustrating how each DSCB will
appear in the listing, see Appendix D, “IEHLIST VTOC Listing” on
page 399.

282 DFSMS/MVS V1R5 Utilities

 IEHLIST

Second Edited Format
The second edited format is an abbreviated description of the data sets. It is pro-
vided by default when no format is specifically requested. It provides the following
information:

� Data set name
� Creation date (yyyy.ddd)
� Expiration date (yyyy.ddd)

 � Password indication
� Organization of the data set

 � Extents
� Volume serial number

 � SMS indicators

The last line in the listing indicates how much space remains in the VTOC.

For non-indexed VTOCs, data set entries are listed in physical-sequential order.
Totals of unallocated cylinders, unallocated tracks, and unallocated (Format 0)
DSCBs are also listed.

For indexed VTOCs, this listing contains:

� A statement of the number of levels in the index.

� Data set entries listed in alphanumeric order.

� Totals of unallocated cylinders, unallocated tracks, unallocated (Format 0)
DSCBs, and unallocated VIRs.

 � SMS indicators.

Unedited (Dump) Format
This option produces a complete hexadecimal listing of the DSCBs in the VTOC.
The listing is in an unedited dump form, requiring you to know the various formats
of applicable DSCBs. The VTOC overlay for IEHLIST listings of VTOCs in dump
format is useful in identifying the fields of the DSCBs.

For non-indexed VTOCs, this listing contains:

� DSCBs dumped, in physical-sequential order.

� Totals of unallocated cylinders, unallocated tracks, and unallocated (Format 0)
DSCBs.

For indexed VTOCs there are two types of dump listings. These types are specified
using the INDEXDSN parameter.

If INDEXDSN is omitted, the listing contains:

� DSCBs dumped in physical-sequential order.

– If the device has 64K or less tracks, then one token Format 5 DSCB is
identified.

– If the device has more than 64K tracks, then both a token Format 5 DSCB
and a token Format 7 DSCB are identified.

� Unformatted free space information.

� Totals of unallocated cylinders, unallocated tracks, unallocated (Format 0)
DSCBs, and unallocated VIRs.

 IEHLIST (List System Data) Program 283

 IEHLIST

If INDEXDSN=name is specified, the listing contains, in addition to the items above:

� A dump of the space and allocation information.

If the VTOC index is disabled, both allocated and unallocated records are
dumped in physical-sequential order.

� If the VTOC index is disabled, a statement is included to this effect.

For a discussion of the various formats that data set control blocks can assume,
see DFSMS/MVS DFSMSdfp Advanced Services.

Input and Output
IEHLIST uses the following input:

� One or more source data sets that contain the data to be listed. The input data
set can be:

 – A VTOC
– A partitioned data set or PDSE
– An CVOL (SYSCTLG).

� A control data set, that contains utility control statements that are used to
control the functions of IEHLIST.

IEHLIST produces as output a message data set that contains the result of the
IEHLIST operations. The message data set includes the listed data and any error
messages.

If IEHLIST is invoked from an application program, you can dynamically allocate the
devices and data sets by issuing SVC 99 before calling IEHLIST.

See Appendix A for IEHLIST return codes.

 Control
IEHLIST is controlled by job and utility control statements. The job control state-
ments are used to process or load IEHLIST and to define the data sets used and
produced by IEHLIST.

Utility control statements are used to control the functions of the program and to
define those data sets or volumes to be modified.

Job Control Statements
Figure 92 shows the job control statements for IEHLIST.

284 DFSMS/MVS V1R5 Utilities

 IEHLIST

IEHLIST cannot support empty space calculations for CVOL data sets allocated in
blocks when the block sizes are approximately the same or larger than the track
size. The empty block calculation gives only approximate indications of available
space. When IEHLIST cannot supply an approximate number, the “Unable to Cal-
culate” message is issued.

IEHLIST specifications do not allow for serialization of the object being listed. If
another program updates a block of the data set just prior to IEHLIST reading the
data set, a message (IEH105I or IEH114I) may be issued and the output produced
by IEHLIST may be incorrect. If this happens, rerun the job.

Figure 92. IEHLIST Job Control Statements

Statement Use

JOB Starts the job.

EXEC Specifies the program name (PGM=IEHLIST) or, if the job control state-
ments reside in a procedure library, the procedure name. Additional
PARM information can be specified to control the number of lines printed
per page.

SYSPRINT DD Defines a sequential data set for messages.

anyname DD| Defines a permanently mounted or mountable volume. The maximum
| number of these allocated devices cannot exceed 256 per job step.

SYSIN DD Defines the control data set. The control data set normally follows the
job control language in the input stream; however, it can be defined as
an unblocked sequential data set or member of a procedure library.

 EXEC Statement
You can control the number of lines IEHLIST will print per page of output using the
PARM parameter on the EXEC statement. The EXEC statement can be coded:

where:

PGM=IEHLIST
specifies that IEHLIST is the program you want to run.

PARM='LINECNT=xx'
specifies the number of lines, xx, to be printed per page. The number specified
by xx must be a decimal number from 01 to 99. If LINECNT is not specified, 58
lines are printed per page.

The PARM field cannot contain embedded blanks, zeros, or any other PARM
keywords if LINECNT is specified.

//[stepname] EXEC PGM=IEHLIST[,PARM= 'LINECNT=xx']

SYSPRINT DD Statement
The block size for SYSPRINT must be a multiple of 121. Any blocking factor can be
specified for this block size.

 IEHLIST (List System Data) Program 285

 IEHLIST

anyname DD Statement
A DD statement must be included for each permanently mounted or mountable
volume referred to in the job step. These DD statements are used to allocate
devices: they are not true data definition statements. Concatenated DD statements
are not allowed.

Because IEHLIST modifies the internal control blocks created by device allocation
DD statements, these DD statements must not include the DSNAME parameter.
(All data sets are defined explicitly or implicitly by utility control statements.)

For permanently mounted volumes, or mountable volumes for which deferred
mounting is not required, the DD statement can be entered:

//anyname DD UNIT=xxxx,VOLUME=SER=xxxxxx,DISP=OLD

The UNIT and VOLUME=SER parameters define the device type and volume serial
number without requiring that a real data set be allocated on the volume.

For mountable volumes requiring deferred mounting, the DD statement can be
entered: The DISP=OLD parameter prevents the creation of a data set.

//anyname2 DD UNIT=(xxxx,,DEFER),VOLUME=(PRIVATE,...),DISP=OLD

Here, the PRIVATE indication on the VOLUME parameter is optional.

Unit affinity cannot be used on DD statements defining mountable devices.

SYSIN DD Statement
The block size for SYSIN must be a multiple of 80. Any blocking factor can be
specified for this block size. You can concatenate DD statements for SYSIN.

Utility Control Statements
Figure 93 shows the utility control statements for IEHLIST.

Continuation requirements for utility control statements are described in “Continuing
Utility Control Statements” on page 8.

Figure 93. IEHLIST Utility Control Statements

Statement Use

LISTCTLG Requests a listing of all or part of an CVOL (SYSCTLG).

LISTPDS Requests a directory listing of one or more partitioned data sets or
PDSEs.

LISTVTOC Requests a listing of all or part of a volume table of contents.

 LISTCTLG Statement
The LISTCTLG statement is used to request a listing of either the entire CVOL or a
specified portion of the CVOL (SYSCTLG data set). The listing includes the fully
qualified name of each applicable cataloged data set and the serial number of the
volume on which it resides. Empty index levels are not listed.

The syntax of the LISTCTLG statement is:

286 DFSMS/MVS V1R5 Utilities

 IEHLIST

where:

VOL=device=serial
specifies the device type and volume serial number of the volume on which the
CVOL resides.

Default: The CVOL is assumed to reside on the system residence volume.

NODE=name
specifies a qualified name. All data set entries whose names are qualified by
this name are listed. The CVOL must be defined in the integrated catalog
facility or VSAM master catalog as: SYSCTLG.Vyyyyyy, where yyyyyy is the
serial number of the CVOL. For details, see DFSMS/MVS Managing Catalogs.

Default: All data set entries are listed.

[label] LISTCTLG [VOL=device=serial]
[,NODE=name]

 LISTPDS Statement
The LISTPDS statement is used to request a directory listing of one or more parti-
tioned data sets or PDSEs that reside on the same volume.

The FORMAT option of the LISTPDS statement may be used only on a partitioned
data set whose members have been created by the linkage editor. See “Listing a
Partitioned Data Set or PDSE Directory” on page 279 for an explanation of the
edited listing of module libraries. If you try to use FORMAT with a PDSE or parti-
tioned data set whose members are not load modules, the listing will contain unde-
pendable information.

The syntax of the LISTPDS statement is:

where:

DSNAME=(name[,name[,...]])
specifies the fully qualified names of the partitioned data sets or PDSEs whose
directories are to be listed. A maximum of 10 names is allowed. If the list con-
sists of only a single name, the parentheses can be omitted.

VOL=device=serial
specifies the device type and volume serial number of the volume on which the
partitioned data set or PDSE directory resides. If the partitioned data set or
PDSE is not on the system residence volume, the VOL parameter is required.

DUMP
specifies that the listing is to be in unedited, hexadecimal form. DUMP is the
default.

FORMAT
specifies that the listing is to be edited for each directory entry.

The FORMAT option may be used only on a partitioned data set whose
members have been created by the linkage editor. Members that have not

[label] LISTPDS DSNAME=(name[,name[,...]])
[,VOL=device=serial]
[,{DUMP|FORMAT}]

 IEHLIST (List System Data) Program 287

 IEHLIST

been created by the linkage editor cause their directory entries to be listed in
unedited (DUMP) format.

 LISTVTOC Statement
The LISTVTOC statement is used to request a partial or complete listing of the
entries in a specified volume table of contents.

If you are using IEHLIST to list both the VTOC and the index data set of an
indexed VTOC, refer to “Listing a Volume Table of Contents” on page 281.

The syntax of the LISTVTOC statement is:

where:

DUMP
specifies that the listing is to be in unedited, hexadecimal form. The dump
option will show SMS indicators and fields in the VTOC (format 1 and 4
DSCBs) and the VTOC index in hexadecimal format.

FORMAT [,PDSESPACE]
specifies that a comprehensive edited listing is to be generated.

When PDSESPACE is specified, the space allocated, and space used, is dis-
played. This display occurs only for PDSE data sets, and is in kilobytes
(kbytes).

If both FORMAT and DUMP are omitted, an abbreviated edited format is gener-
ated.

INDEXDSN=SYS1.VTOCIX.xxxx
specifies that index information is to be listed, in addition to the VTOC. The
value xxxx is any third level qualifier. DUMP or FORMAT must be specified if
INDEXDSN is specified. For more information on indexed VTOCs, refer to
“Listing a Volume Table of Contents” on page 281.

DATE={dddyy|dddyyyy}
specifies that each entry that expires before this date is to be flagged with an
asterisk (*) after the entry name in the listing. This parameter applies only to
the abbreviated edited format.

dddyy
specifies the day of the year, ddd, and the last two digits of the year, yy.

dddyyyy
specifies the day of the year, ddd, and the year from 1900 to 2155, yyyy.

Default: No asterisks appear in the listing.

VOL=device=serial
specifies the device type and volume serial number of the volume on which the
VTOC resides.

| [label]| LISTVTOC| [{DUMP|FORMAT[,PDSESPACE]}]
| [,INDEXDSN=SYS1.VTOCIX.xxxx]
| [,DATE={ dddyy|dddyyyy}]
| [,VOL=device=serial]
| [,DSNAME=(name[,name[,...]])

288 DFSMS/MVS V1R5 Utilities

 IEHLIST

| DSNAME=(name[,name[,...]])
| specifies the fully qualified names of the data sets whose entries are to be
| listed. A maximum of 10 names is allowed. If the list consists of only a single
| name, the parentheses can be omitted.

| Note: If the DSNAME specified is a VSAM cluster name, the information
| returned indicates that the data set exists on the physical device
| (volume). But since there is no format 1 DSCB for the VSAM cluster,
| the output for a VSAM cluster will not be identical to the output for a
| normal data set.

 IEHLIST Examples
The following examples illustrate some of the uses of IEHLIST. Figure 94 can be
used as a quick-reference guide to IEHLIST examples. The numbers in the
“Example” column refer to examples that follow.

Figure 94. IEHLIST Example Directory

Operation Devices Comments Example

LISTCTLG Disk and system
output device

Source CVOL is listed on the system output device. 1

LISTCTLG Disk system resi-
dence device and
system output
device

Three CVOLs and part of a fourth are listed on the system
output device.

2

LISTPDS Disk and system
output device

One PDSE directory and two partitioned data set directo-
ries are listed.

3

LISTVTOC Disk and system
output device

Volume table of contents is listed in edited form; selected
data set control blocks are listed in unedited form.

4

Examples that use disk in place of actual device numbers or names must be
changed before use. The actual device numbers or names depend on how your
installation has defined the devices to your system.

Example 1: List CVOL Entries
In this example, an CVOL named SYSCTLG.V111111, residing on a disk volume
(111111), is listed.

 //CATLIST JOB ...
 //STEP1 EXEC PGM=IEHLIST
 //SYSPRINT DD SYSOUT=A
 //DD2 DD UNIT=disk,VOLUME=SER=111111,DISP=OLD
 //SYSIN DD \
 LISTCTLG VOL=disk=111111
 /\

The control statements are discussed below:

� DD2 DD defines a device on which the volume containing the source CVOL is
mounted.

� SYSIN DD defines the control data set, which follows in the input stream.

� LISTCTLG defines the source volume and specifies the list operation.

 IEHLIST (List System Data) Program 289

 IEHLIST

Example 2: List Selected CVOL Entries
In this example, an CVOL residing on the system residence volume, two CVOLs
residing on disk volumes, and a portion of an CVOL residing on another volume,
are listed.

| //CATLIST JOB ...
| //STEP1 EXEC PGM=IEHLIST
| //SYSPRINT DD SYSOUT=A
| //DD1 DD UNIT=diskB,VOLUME=REF=SYS1.NUCLEUS,DISP=OLD
| //DD2 DD UNIT=(diskA,,DEFER),DISP=OLD,
| // VOLUME=(PRIVATE,,SER=(222222))
| //SYSIN DD \
| LISTCTLG
| LISTCTLG VOL=diskA=333333
| LISTCTLG VOL=diskA=444444
| LISTCTLG VOL=diskA=555555,NODE=A.B.C
| /\

The control statements are discussed below:

� DD1 DD defines a system residence device. (The first CVOL to be listed
resides on the system residence volume.)

� DD2 DD defines a mountable device on which each diskA volume is mounted
as it is required by the program.

� SYSIN DD defines the control data set, which follows in the input stream.

� The first LISTCTLG statement indicates that the CVOL residing on the system
residence volume is to be listed.

� The second and third LISTCTLG statements identify two diskA disk volumes
containing CVOLs to be listed.

� The fourth LISTCTLG statement identifies a diskA volume containing an CVOL
that is to be partially listed. All data set entries whose beginning qualifiers are
“A.B.C” are listed.

Example 3: List Partitioned Directories Using DUMP and FORMAT
| In this example, the directory of a PDSE is listed. In addition, the directories of two
| partitioned data sets that reside on the system residence volume are listed.

| //LISTPDIR JOB ...
| //STEP1 EXEC PGM=IEHLIST
| //SYSPRINT DD SYSOUT=A
| //DD1 DD UNIT=diskB,VOLUME=SER=111111,DISP=OLD
| //DD2 DD UNIT=diskA,VOLUME=SER=222222,DISP=OLD
| //SYSIN DD \
| LISTPDS DSNAME=D42.PDSE1,VOL=diskA=222222
| LISTPDS DSNAME=(D55.PART1,D55.PART2),FORMAT
| /\

The control statements are discussed below:

� DD1 DD defines the system residence device.

� DD2 DD defines a device on which a disk volume (222222) is mounted.

� SYSIN DD defines the control data set, which follows in the input stream.

290 DFSMS/MVS V1R5 Utilities

 IEHLIST

| � The first LISTPDS statement indicates that the PDSE directory belonging to
| data set D42.PDSE1 is to be listed. The listing is in unedited (dump) format.
| This data set resides on volume 222222.

| � The second LISTPDS statement indicates that partitioned data set directories
| belonging to data sets D55.PART1 and D55.PART2 are to be listed. The
| listing is in edited format. These data sets exist on the system residence
| volume (111111).

Figure 91 on page 281 shows an unedited entry for a partitioned member.
Figure 90 on page 280 shows an edited entry.

Example 4: List Non-indexed Volume Table of Contents
In this example, a non-indexed volume table of contents is listed in the first edited
format. The edited listing is supplemented by an unedited listing of selected data
set control blocks.

 //VTOCLIST JOB ...
 //STEP1 EXEC PGM=IEHLIST
 //SYSPRINT DD SYSOUT=A
 //DD2 DD UNIT=disk,VOLUME=SER=111111,DISP=OLD
 //SYSIN DD \
 LISTVTOC FORMAT,VOL=disk=111111
 LISTVTOC DUMP,VOL=disk=111111,DSNAME=(SET1,SET2,SET3)
 /\

The control statements are discussed below:

� DD2 DD defines a device containing the specified volume table of contents.

� SYSIN DD defines the control data set, which follows in the input stream.

� The first LISTVTOC statement indicates that the volume table of contents on
the specified disk volume is to be listed in edited form.

� The second LISTVTOC statement indicates that the data set control blocks
representing data sets SET1, SET2, and SET3 are to be listed in unedited
form.

 IEHLIST (List System Data) Program 291

 IEHLIST

292 DFSMS/MVS V1R5 Utilities

 IEHMOVE

IEHMOVE (Move System Data) Program

IEHMOVE is a system utility used to move or copy logical collections of operating
system data.

The information given on IEHMOVE is provided for the sake of compatibility only.
DFSMSdss should be used instead of IEHMOVE to move or copy data to volumes
managed by the Storage Management Subsystem. DFSMSdss or IEBCOPY should
be used to process PDSEs. You cannot use IEHMOVE with PDSEs or ISAM or
VSAM data sets.

If you do use IEHMOVE to move or copy data sets to SMS-managed volumes, you
must preallocate all the target data sets. If the data set you are copying or moving
is cataloged, and you are moving or copying it to an SMS-managed volume, you
must rename the data set.

See DFSMS/MVS Using Data Sets for more information on allocating
SMS-managed data sets and DFSMS/MVS Access Method Services for ICF for
information on the ALLOCATE command.

You will not be allowed to move or copy a CVOL or a data set group to an
SMS-managed volume.

IEHMOVE can be used to move or copy:

� A sequential, partitioned or BDAM data set residing on one to five volumes.

� A group of non-VSAM data sets cataloged in an CVOL, integrated catalog
facility or VSAM catalog.

� An entire CVOL or portions of an CVOL.

� A volume of data sets.

� BDAM data sets with variable-spanned records.

A move operation differs from a copy operation in that a move operation scratches
source data if the data set resides on a direct access volume and the expiration
date has occurred, while a copy operation leaves source data intact. In addition, for
cataloged data sets, a move operation updates the OS CVOL to refer to the moved
version (unless otherwise specified), while a copy operation leaves the CVOL
unchanged.

The scope of a basic move or copy operation can be enlarged by:

� Including or excluding data sets from a move or copy operation
� Merging members from two or more partitioned data sets
� Including or excluding selected members
� Renaming moved or copied members
� Replacing selected members

When moving or copying a data set group or a volume containing password-
protected data sets, you must provide the password each time a data set is opened
or scratched.

 Copyright IBM Corp. 1979, 1999 293

 IEHMOVE

IEHMOVE always moves or copies any user labels associated with an input data
set. You cannot use your own label processing routine with IEHMOVE.

A move or copy operation results in: a moved or copied data set; no action; or an
unloaded version of the source data set.

Note: If IEHMOVE is unable to successfully move or copy specified data, it tries to
reorganize the data and place it on the specified output device. The reor-
ganized data (called an unloaded data set) is a sequential data set con-
sisting of 80-byte blocked records that contain the source data and control
information for subsequently reconstructing the source data as it originally
existed. These results depend upon the compatibility of the source and
receiving volumes with respect to:

� Size of the volumes
� Allocation of space on the receiving volume
� Data set organization (sequential, partitioned, or BDAM)
� Movability of the source data set

Considering Volume Size Compatibility
When using partitioned or sequential data set organization, two volumes are com-
patible with respect to size if the source record size does not exceed the track size
of the receiving volume.

When using BDAM data set organization, two volumes are compatible with respect
to size if the track capacity of the source volume does not exceed the receiving
track capacity of the receiving volume. BDAM data sets moved or copied to a
smaller device type or tape are unloaded. If you wish to load an unloaded data set,
it must be loaded to the same device type from which it was originally unloaded.

Figure 95 shows the results of move and copy operations when the receiving
volume is a DASD volume that is compatible in size with the source volume. The
organization of the source data set is shown along with the characteristics of the
receiving volume.

Figure 95. Move and Copy Operations—DASD Receiving Volume with Size Compatible with
Source Volume

Receiving Volume
Characteristics

Sequential Data
Sets

Partitioned Data
Sets BDAM Data Sets

Space allocated by
IEHMOVE (movable
data)

Moved or copied Moved or copied Moved or copied

Space allocated by
IEHMOVE (unmov-
able data)

Moved or copied Moved or copied No action

Space previously
allocated, as yet
unused

Moved or copied Moved or copied No action

Space previously
allocated, partially
used

No action Moved or copied
(merged)

No action

294 DFSMS/MVS V1R5 Utilities

 IEHMOVE

Figure 96 on page 295 shows the results of move and copy operations when the
receiving volume is a DASD volume that is not compatible in size with the source
volume. The organization of the source data set is shown along with the character-
istics of the receiving volume.

Figure 97 shows the results of move and copy operations when the receiving
volume is not a DASD volume. The organization of the source data set is shown
with the characteristics of the receiving volume.

Figure 96. Move and Copy Operations—DASD Receiving Volume with Size Incompatible
with Source Volume

Receiving Volume
Characteristics

Sequential Data
Sets

Partitioned Data
Sets BDAM Data Sets

Space allocated by
IEHMOVE

Unloaded Unloaded Unloaded

Space previously
allocated, as yet
unused

Unloaded Unloaded No action

Space previously
allocated, partially
used

No action No action No action

Figure 97. Move and Copy Operations—Non-DASD Receiving Volume

Receiving Volume
Characteristics

Sequential Data
Sets

Partitioned Data
Sets BDAM Data Sets

Movable data Moved or copied Unloaded Unloaded

Unmovable data Unloaded Unloaded No action

Allocating Space for a Moved or Copied Data Set
Space can be allocated for a data set on a receiving volume either by you (through
the use of DD statements) or by IEHMOVE in the IEHMOVE job step.

If the source data is unmovable (that is, if it contains location-dependent code), you
should allocate space on the receiving volume using absolute track allocation to
ensure that the data set is placed in the same relative location on the receiving
volume as it was on the source volume. Unmovable data can be moved or copied if
space is allocated by IEHMOVE, but the data may not be in the same location on
the receiving volume as it was on the source volume.

When data sets are to be moved or copied between unlike DASD devices, a sec-
ondary allocation should be made to ensure that ample space is available on the
receiving volume.

Space for a new data set should not be allocated by you when a BDAM data set is
to be moved or copied, not unloaded, because IEHMOVE cannot determine if the
new data set is empty.

If IEHMOVE performs the space allocation for a new data set, the space require-
ment information of the old data set (if available) is used. This space requirement

 IEHMOVE (Move System Data) Program 295

 IEHMOVE

information is obtained from the DSCB of the source data set, if it is on a DASD
volume, or from the control information in the case of an unloaded data set.

If space requirement information is available, IEHMOVE uses this information to
derive an allocation of space for the receiving volume, taking into account the differ-
ences in device characteristics, such as track capacity and overhead factors.
However, when data sets with variable or undefined record formats are being
moved or copied between unlike DASD devices, no assumption can be made about
the space that each individual record needs on the receiving device.

In general, when variable or undefined record formats are to be moved or copied,
IEHMOVE tries to allocate sufficient space. This can cause too much space to be
allocated under the following circumstances:

� When moving or copying from a device with a relatively large block overhead to
a device with a smaller block overhead, the blocks being small in relation to the
block size.

� When moving or copying from a device with a relatively small block overhead to
a device with a larger block overhead, the blocks being large in relation to the
block size.

BDAM data sets with variable or undefined record formats always have the same
amount of space allocated by IEHMOVE. This practice preserves any relative track
addressing system that may exist within the data sets.

If a sequential data set, which is not an unloaded data set, on a non-DASD volume
is to be moved or copied to a DASD volume, and space attributes are not available
through a previous allocation, IEHMOVE makes a default space allocation. The
default allocation consists of a primary allocation of 72,500 bytes of DASD storage
(data and gaps) and up to 15 secondary allocations of 36,250 bytes each.

Space cannot be previously allocated for a partitioned data set that is to be
unloaded unless the SPACE parameter in the DD statement making the allocation
implies sequential organization. BDAM data sets should not be previously allocated
because IEHMOVE cannot determine if they are empty or not.

If a move or copy operation is unsuccessful, the source data remains intact.

If a move or copy operation is unsuccessful and space was allocated by IEHMOVE,
all data associated with that operation is scratched from the receiving DASD
volume. If the receiving volume was tape, it will contain a partial data set.

If a move or copy operation is unsuccessful and space was previously allocated, no
data is scratched from the receiving volume. If, for example, IEHMOVE moved 104
members of a 105-member partitioned data set and encountered an input/output
error while moving the 105th member:

� The entire partitioned data set is scratched from the receiving volume if space
was allocated by IEHMOVE.

� No data is scratched from the receiving volume if space was previously allo-
cated. In this case, after determining the nature of the error, you need move
only the 105th member into the receiving partitioned data set.

296 DFSMS/MVS V1R5 Utilities

 IEHMOVE

If a data set that has only user trailer labels is to be moved from a tape volume to a
DASD volume, space must be previously allocated on the DASD volume to ensure
that a track is reserved to receive the user labels.

Reblocking Data Sets
Data sets with fixed or variable records can be reblocked to a different block size
by previously allocating the desired block size on the receiving volume. No
reblocking can be performed when loading or unloading. Also, no reblocking can be
performed on data sets with variable spanned or variable blocked spanned records.

When moving or copying data sets with undefined record format and reblocking to
a smaller block size (that is, transferring records to a device with a track capacity
smaller than the track capacity of the original device), you must make the block
size for the receiving volume equal to or larger than the size of the largest record in
the data set being moved or copied.

When copying data sets with undefined record format to a device with a larger track
capacity, IEHMOVE will not reblock the output data set to a larger block size.
IEHMOVE simply copies the source data set to the target data set.

However, if the target data set is preallocated with a larger block size than the
source data set, the data set becomes unusable because the source block size is
used during the copy.

Blocked format data sets that do not contain user data TTRNs or keys can be
reblocked or unblocked by including the proper keyword subparameters in the DCB
operand of the DD statement used to previously allocate space for the data set.
The new blocking factor must be a multiple of the logical record length originally
assigned to the data set. For a discussion of user data TTRNs, see DFSMS/MVS
Using Data Sets.

Using IEHMOVE with RACF
If the Resource Access Control Facility (RACF*) is active, the following consider-
ations apply:

� You must have valid RACF authorization to access any RACF-defined data
sets with IEHMOVE. ALTER authorization is required to access the source data
set for a MOVE function, as the source data set is scratched. When moving a
volume or group of data sets, you must have adequate access authorization to
all of the RACF-protected data sets on the volume or in the group.

� If you have the RACF ADSP attribute and IEHMOVE is to allocate space for
the receiving data set, that data set will be automatically defined to RACF. If
the data set does not have your userid as the first level qualifier, at least one of
the following conditions must be met:

1. You specify MOVE or COPY with RENAME so that the first level qualifier is
the correct userid,

2. The data set being moved or copied is a group data set and you are con-
nected to the group with CREATE authority, or

3. You have the OPERATION attribute.

� If COPYAUTH is specified and the input data set is RACF-protected (whether
or not you have the ADSP attribute) and the output data set is not preallocated,

 IEHMOVE (Move System Data) Program 297

 IEHMOVE

then the receiving data set of a MOVE or COPY operation is given a copy of
the input data set's RACF protection access list during allocation, governed by
the same restrictions and described above for defining a data set for a user
with the ADSP attribute. You must have ALTER access authorization to the
input data set to either MOVE or COPY using COPYAUTH.

� The temporary work files are allocated with the nonstandard names of
**SYSUT1.T<time>, **SYSUT2.T<time>, and **SYSUT3.T<time>. These names
must be included as valid data set names in the RACF Naming Convention
Table if that option is being used.

Moving or Copying a Data Set
IEHMOVE can be used to move or copy sequential, partitioned, and BDAM data
sets, as follows:

� A sequential data set can be:

1. Moved from one DASD volume or non-DASD volume to another (or to the
same volume provided that it is a DASD volume), or

2. Copied from one volume to another (or to the same volume provided that
the data set name is changed and the receiving volume is a DASD
volume).

� A partitioned data set can be:

1. Moved from one DASD volume to another (or to the same volume), or

2. Copied from one DASD volume to another (or to the same volume provided
that the data set name is changed).

� A BDAM data set can be moved or copied from one DASD volume to another
provided that the receiving device type is the same device type or larger, and
that the record size does not exceed 32K bytes.

Sequential Data Sets
Figure 98 shows basic and optional move and copy operations for sequential data
sets.

When moving or copying sequential data sets on a direct access device, IEHMOVE
execution time can be reduced by using multiple BSAM buffers for input and output.

Figure 98. Moving and Copying Sequential Data Sets

Operation Basic Actions Optional Actions

Move Sequential Move the data set. For
DASD, scratch the source
data. For non-VSAM cata-
loged data sets, update
the appropriate catalog to
refer to the moved data
set.

Prevent automatic cataloging
of the moved data set.
Rename the moved data
set.

Copy Sequential Copy the data set. The
source data set is not
scratched. The catalog is
not updated to refer to the
copied data set.

Delete the catalog or CVOL
entry for the source data set.
Catalog the copied data set
on the receiving volume.
Rename the copied data set.

298 DFSMS/MVS V1R5 Utilities

 IEHMOVE

For information on how to specify the number of buffers to be used by IEHMOVE,
see “EXEC Statement” on page 307.

Partitioned Data Sets
Figure 99 shows basic and optional move and copy operations for partitioned data
sets.

Figure 100 on page 300 shows a copied partitioned data set. IEHMOVE moves or
copies partitioned members in the order in which they appear in the partitioned
directory. That is, moved or copied members are placed in collating sequence on
the receiving volume. The IEBCOPY utility program (see “IEBCOPY (Library Copy)
Program” on page 25) can be used to copy data sets whose members are not to
be collated.

Figure 99. Moving and Copying Partitioned Data Sets

Operation Basic Actions Optional Actions

Move Partitioned Move the data set. Scratch
the source data. For cata-
loged data sets, update
the appropriate catalog to
refer to the moved data
set.

Prevent automatic cataloging
of the moved data set.
Rename the moved data
set. Reallocate directory
space, if the space was allo-
cated by IEHMOVE during
the move. Merge two or
more data sets. Move only
selected members. Replace
members. Unload the data
set.

Copy Partitioned Copy the data set. The
source data is not
scratched. The catalog is
not updated to refer to the
copied data set.

Delete the catalog or CVOL
entry for the source data set.
Catalog the copied data set.
Rename the copied data set.
Reallocate directory space,
unless the space previously
allocated is partially used.
Merge two or more data
sets. Copy only selected
members. Replace
members. Unload the data
set.

 IEHMOVE (Move System Data) Program 299

 IEHMOVE

Source data set Copied data set

Directory
A B C D

Directory
A B C D

Member
A

Member
A

C

B

D

B

C

D

Figure 100. Partitioned Data Set Before and After an IEHMOVE Copy Operation

Members that are merged into an existing data set are placed, in collating
sequence, after the last member in the existing data set. If the target data set con-
tains a member with the same name as the data set to be moved, the member will
not be moved or copied unless the REPLACE statement is coded.

Figure 101 shows members from one data set merged into an existing data set.
Members B and F are copied in collating sequence.

Existing data set
prior to merge

Existing data set
after merge

Source data set

Directory
A C G

Directory
A B C F G

Member
A

Member
A

C

B

G G

C

F

Directory
B F

F

B

Figure 101. Merging Two Data Sets Using IEHMOVE

Figure 102 on page 301 shows how members from two data sets are merged into
an existing data set. Members from additional data sets can be merged in a like
manner. Members F, B, D and E from the source data sets are copied in collating
sequence.

300 DFSMS/MVS V1R5 Utilities

 IEHMOVE

Note:

Directory
A C G

Member
A

C

G

Directory
A B C D E F G

Directory
B F

Directory
D E

D

E

Member
F

B

Member
A

C

G

B

D

E

F

Existing data set
prior to merge

Source data sets

Existing data set
after merge

New members
are placed in collating
sequence after existing
members

Figure 102. Merging Three Data Sets Using IEHMOVE

BDAM Data Sets
When moving or copying a BDAM data set from one device to another device of
the same type, relative track and relative block integrity are maintained.

When moving or copying a BDAM data set to a larger device, relative track integrity
is maintained for data sets with variable or undefined record formats; relative block
integrity is maintained for data sets with fixed record formats.

When moving or copying a BDAM data set to a smaller device or a tape, the data
set is unloaded. An unloaded data set is loaded only when it is moved or copied to
the same device type from which it was unloaded.

BDAM data sets with variable-spanned records can be copied from one DASD
volume to a compatible DASD volume provided that the record size does not
exceed 32K bytes. (See “Considering Volume Size Compatibility” on page 294 for
information on volume compatibility.)

Because a BDAM data set can reside on one to five volumes (all of which must be
mounted during any move or copy operation), it is possible for the data set to span
volumes. However, single variable-spanned records are contained on one volume.

 IEHMOVE (Move System Data) Program 301

 IEHMOVE

Relative track integrity is preserved in a move or copy operation for spanned
records. Moved or copied BDAM data sets occupy the same relative number of
tracks that they occupied on the source device.

If a BDAM data set is unloaded (moved or copied to a smaller device or tape), it
must be loaded back to the same device type from which it was originally unloaded.

When moving or copying variable-spanned records to a larger device, record seg-
ments are combined and respanned if necessary. Because the remaining track
space is available for new records, variable-spanned records are unloaded before
being moved or copied back to a smaller device.

If you wish to create a BDAM data set without using data management BDAM
macros, all data management specifications must be followed. Special attention
must be given to data management specifications for R0 track capacity record
content, segment descriptor words, and the BFTEK=R parameter. For more infor-
mation on using data management specifications, see DFSMS/MVS Using Data
Sets.

When moving or copying a multivolume data set, the secondary allocation for
BDAM data sets should be at least two tracks. (See the “WRITE” macro in
DFSMS/MVS Macro Instructions for Data Sets.)

Multivolume Data Sets
IEHMOVE can be used to move or copy multivolume data sets. To move or copy a
multivolume data set, specify the complete volume list in the VOL=SER parameter
on the DD statement. A maximum of 5 volumes can be specified. The same
number of volumes must be specified for the output data set as existed for the
input data set. If the user wishes to consolidate a multivolume data set so that the
data set will reside on fewer volumes, the output data set must be allocated on the
target volume(s) by the user before moving or copying the data set. To move or
copy a data set that resides on more than one tape volume, specify the volume
serial numbers of all the tape volumes and the sequence numbers of the data set
on the tape volumes in the utility control statement. (You can specify the sequence
number even if the data set to be moved or copied is the only data set on a
volume.) To move or copy a data set to more than one tape volume, specify the
volume serial numbers of all the receiving volumes in the utility control statement.

Unloaded Data Sets
If IEHMOVE is unable to successfully move or copy specified data, it tries to reor-
ganize the data and place it on the specified output device. The reorganized data
(called an unloaded data set) is a sequential data set consisting of 80-byte blocked
records that contain the source data and control information for subsequently
reconstructing the source data as it originally existed.

When an unloaded data set is moved or copied (via IEHMOVE) to a device that will
support the data in its true form, the data is automatically reconstructed. For
example, if you try to move a partitioned data set to a tape volume, the data is
unloaded to that volume. You can re-create the data set merely by moving the
unloaded data set to a DASD volume.

302 DFSMS/MVS V1R5 Utilities

 IEHMOVE

Unmovable Data Sets
A data set with the unmovable attribute can be moved or copied from one DASD
volume to another or to the same volume provided that space has been previously
allocated on the receiving volume. Change the name of the data set if move or
copy is to be done to the same volume. SVCLIB can be moved or copied to
another location on the system residence volume, provided that space has been
previously allocated on that volume. The IEHPROGM utility program (see
“IEHPROGM (Program Maintenance) Program” on page 333) must be used imme-
diately after such a move operation to rename the moved version SYS1.SVCLIB. If
the operation was a “copy,” IEHPROGM must be used to scratch the old version
and to rename the copied version.

Moving or Copying a Group of Cataloged Data Sets
IEHMOVE can be used to move or copy a group of partitioned, sequential or BDAM
data sets (a “DSGROUP”) that are cataloged in integrated catalog facility or VSAM
catalogs and whose names are qualified by one or more identical names. For
example, a group of data sets qualified by the name A.B can include data sets
named A.B.D and A.B.E, but could not include data sets named A.C.D or A.D.F.

If you specify that the data set group is cataloged in an CVOL, two additional
options are available. First, additional data sets not belonging to the specified data
set group can be included in the move or copy operation. Second, data sets
belonging to the group can be excluded from the requested operation.

Before copying or moving a DSGROUP that is cataloged in an CVOL, the volume
containing the CVOL must be defined in the integrated catalog facility or VSAM
master catalog. For details on how this is done, see DFSMS/MVS Managing Cata-
logs.

You cannot use IEHMOVE to move or copy a DSGROUP to a volume managed by
the Storage Management Subsystem.

If a group of data sets is moved or copied to magnetic tape, the data sets must be
retrieved one by one by data set name and file-sequence number, or by file-
sequence number for unlabeled or nonstandard labeled tapes.

Access method services can be used to determine the structure of integrated
catalog facility or VSAM catalogs. For more information, see DFSMS/MVS Access
Method Services for ICF.

Figure 103 shows basic and optional move and copy operations for a group of par-
titioned, sequential or BDAM cataloged data sets.

 IEHMOVE (Move System Data) Program 303

 IEHMOVE

Figure 103. Moving and Copying a Group of Cataloged Data Sets

Operation Basic Actions Optional Actions

Move a group of cataloged
data sets

Move the data set group
(excluding password-
protected data sets) to the
specified volumes. Scratch
the source data sets
(BDAM only). Merging is
not done.

Prevent updating of the
appropriate catalog. Include
password-protected data
sets in the operation. Unload
data sets. If a data set group
is cataloged in an CVOL,
you may include or exclude
other data sets during the
operation.

Copy a group of cataloged
data sets

Copy the data set group
(excluding password-
protected data sets).
Source data sets are not
scratched. Merging is not
done.

Include password-protected
data sets in the operation.
Delete catalog entries for the
source data sets. Catalog
the copied data sets on the
receiving volumes. Unload a
data set or sets. If a data set
group is cataloged in an
CVOL, you may include or
exclude other data sets
during the operation.

Move or Copy a CVOL
IEHMOVE can be used to move or copy a CVOL or portions of an OS CVOL
without copying the data sets represented by the cataloged entries. If the CVOL is
in an unloaded form, all entries are moved or copied. The SYSCTLG (system
catalog) data set need not be defined on the receiving volume before the operation.
If, however, SYSCTLG was defined before the operation, the data set organization
must not have been specified in the DCB field. Moved or copied entries are merged
with any existing entries on the receiving volume. The receiving volume must be a
DASD volume unless the CVOL is to be unloaded.

If an CVOL is copied, it remains unchanged. If it is moved, the moved entries are
uncataloged from the source CVOL. (However, empty GDG names and partial
indexes are left in the source CVOL.) If the entire CVOL is moved, the old CVOL is
scratched.

You cannot use IEHMOVE to move or copy a CVOL to a volume managed by the
Storage Management Subsystem.

Figure 104 shows basic and optional move and copy operations for the CVOL.

304 DFSMS/MVS V1R5 Utilities

 IEHMOVE

Before copying or moving an CVOL, both the volume containing the CVOL and the
volume to which the CVOL is to be moved must be defined in the integrated
catalog facility or VSAM master catalog.

Figure 104. Moving and Copying the CVOL

Operation Basic Actions Optional Actions

Move CVOL Move entries from the
CVOL to the specified
DASD volume. Uncatalog
all entries moved from the
source CVOL. Scratch the
source CVOL if the entire
CVOL is moved.

Exclude selected entries
from operation. Move an
unloaded version of the
CVOL. Unload the CVOL.

Copy CVOL Copy entries from the
CVOL to the specified
DASD. The source CVOL
is not scratched.

Exclude selected entries
from the operation. Copy an
unloaded version of the
CVOL. Unload the CVOL.

Moving or Copying a Volume of Data Sets
IEHMOVE can be used to move or copy the data sets of an entire DASD volume to
another volume or volumes. A move operation differs from a copy operation in that
the move operation scratches source data sets, while the copy operation does not.
For both operations, any cataloged entries associated with the source data sets
remain unchanged. The IEHPROGM utility program can be used to delete CVOL
entries for all of the cataloged data sets and recatalog them according to their new
location. (See “IEHPROGM (Program Maintenance) Program” on page 333.)

If the source volume contains a SYSCTLG data set, that data set is the last to be
moved or copied onto the receiving volume.

If a volume of data sets is moved or copied to tape, sequential data sets are
moved; partitioned and BDAM data sets are unloaded. The data sets must be
retrieved one by one by data set name and file-sequence number, or by file-
sequence number for unlabeled or nonstandard labeled tapes.

When copying a volume of data sets, you have the option of cataloging all source
data sets in a SYSCTLG data set on a receiving volume. However, if a SYSCTLG
data set exists on the source volume, error messages indicating that an incon-
sistent index structure exists are generated when the source SYSCTLG entries are
merged into the SYSCTLG data set on the receiving volume.

The move-volume feature does not merge partitioned data sets. If a data set on the
volume to be moved has a name identical to a data set name on the receiving
volume, the data set is not moved or merged onto the receiving volume.

The copy-volume feature does merge partitioned data sets. If a data set on the
volume to be copied has a name identical to a data set name on the receiving
volume, the data set is copied and merged onto the receiving volume.

Figure 105 shows basic and optional move and copy operations for a volume of
data sets.

 IEHMOVE (Move System Data) Program 305

 IEHMOVE

Figure 105. Moving and Copying a Volume of Data Sets

Operation Basic Actions Optional Actions

Move a volume of data sets Move all data sets not pro-
tected by a password to
the specified DASD
volumes. Scratch the
source data sets for DASD
volumes. The CVOL is not
updated.

Include password-protected
data sets in the operation.
Unload the data sets.

COPY a volume of data sets Copy all data sets not pro-
tected by a password to
the specified DASD
volume. The source data
sets are not scratched.

Include password-protected
data sets in the operation.
Catalog all copied data sets
in the CVOL. Unload the
data sets.

Input and Output
IEHMOVE uses the following input:

� One or more partitioned, sequential or BDAM data sets, which contain the data
to be moved, copied, or merged into an output data set.

� A control data set, which contains utility control statements that are used to
control the functions of the program.

� A work data set, which is a work area used by IEHMOVE.

IEHMOVE does not support VIO (virtual input/output) data sets.

IEHMOVE produces the following output:

� An output data set, which is the result of the move, copy, or merge operation.

� A message data set, that contains informational messages (for example, the
names of moved or copied data sets) and error messages, if applicable.

If IEHMOVE is invoked from an application program, you can dynamically allocate
the devices and data sets by issuing SVC 99 before calling IEHMOVE.

See Appendix A for IEHMOVE return codes.

 Control
IEHMOVE is controlled by job and utility control statements. The job control state-
ments are used to process or load the program, define the devices and volumes
used and produced by IEHMOVE, and prevent data sets from being deleted inad-
vertently.

| IEHMOVE is an APF-authorized program. This means that if another program calls
| it, that program mus also be APF-authorized. To protect system integrity, your
| program must follow the sytem integrity requirements described inOS/390 MVS
| Assembler Services Guide.

Utility control statements are used to control the functions of the program and to
define those data sets or volumes that are to be used.

306 DFSMS/MVS V1R5 Utilities

 IEHMOVE

Job Control Statements
Figure 106 shows the job control statements for IEHMOVE.

Since SYSUT2 and SYSUT3 are reserved for IEHMOVE, it is not recommended to
use them in an IEHMOVE job step.

Figure 106. IEHMOVE Job Control Statements

Statement Use

JOB Starts the job.

EXEC Specifies the program name
(PGM=IEHMOVE) or, if the job control
statements reside in a procedure library, the
procedure name. This statement can also
include optional parameter information.

SYSPRINT DD Defines a sequential data set for messages.
The data set can be written onto a system
output device, a magnetic tape volume, or a
direct access volume.

SYSUT1 DD Defines a volume on which three work data
sets required by IEHMOVE are allocated.

anyname DD Defines a permanently mounted or mount-
able DASD volume. At least one perma-
nently mounted volume must be identified.

tape DD Defines a mountable tape device.

SYSIN DD Defines the control data set. The data set,
which contains utility control statements,
usually follows the job control statements in
the input stream; however, it can be defined
either as a sequential data set or as a
member of a procedure library.

 EXEC Statement
The EXEC statement for IEHMOVE can contain parameter information that is used
by the program to allocate additional work space or control line density on output
listings. You can also code the REGION subparameter to control the region size
that IEHMOVE operates in when you are moving or copying sequential data sets.

The syntax of the EXEC statement is:

where:

PGM=IEHMOVE
specifies that you want to run IEHMOVE.

PARM='[POWER=n][,LINECNT= xx]'
specifies optional parameter information to be passed to IEHMOVE.

//[stepname] EXEC PGM=IEHMOVE
[,PARM='[POWER=n][,LINECNT= xx]']
[,REGION={nK|nM}]

 IEHMOVE (Move System Data) Program 307

 IEHMOVE

POWER=n
specifies that you want the space allocated to the work areas IEHMOVE
will use to be increased n times. N may be from 1 to 999. You should use
this parameter when moving or copying large partitioned data sets, or
CVOLs.

If a partitioned data set has more than 750 members, POWER should be
coded. The progression for the value of n is:

� POWER=2 when 750 to 1500 members are to be moved or copied.
� POWER=3 when 1501 to 2250 members are to be moved or copied.
� POWER=4 when 2251 to 3000 members are to be moved or copied.

For example, if POWER=2, three areas of 26, 26, and 52 contiguous tracks
on a 3380 must be available.

When moving or copying an CVOL, the value of the POWER parameter
can be calculated as follows:

n=(1ðD + V + 2ðG)/4ððð

where D is the total number of data sets, aliases, and generation data set
entries (which is the number of data set names printed by the IEHLIST
utility program when the LISTCTLG statement is specified); V is the total
number of volumes used by these data sets (which is the number of lines
printed by the IEHLIST utility program when the LISTCTLG statement is
specified); and G is the number of generation data sets. These approximate
values can be used:

� POWER=2 when 350 to 700 data sets are cataloged.
� POWER=3 when 701 to 1050 data sets are cataloged.
� POWER=4 when 1051 to 1400 data sets are cataloged.

LINECNT=xx
specifies how many lines per page will be printed in the listing of the
SYSPRINT data set. Xx can be a two-digit number from 04 through 99.

For more information on PARM values, see OS/390 MVS Authorized Assembler
Services Guide .

REGION={nK|nM}
specifies the region size you want IEHMOVE to run in when you are moving or
copying sequential data sets. You can use this parameter to enhance
IEHMOVE performance, but it is not a required parameter for moving or
copying sequential data sets.

The minimum number of buffers required for enhanced IEHMOVE copy per-
formance is 4: two for input and two for output. The size of an input buffer is
computed as:

(INPUT BLOCKSIZE + KEY LENGTH) + DECB LENGTH + 4

The size of an output buffer is computed as:

(OUTPUT BLOCKSIZE + KEY LENGTH) + DECB LENGTH + 4 + 16.

The maximum number of input buffers used by IEHMOVE is two times the
number of buffers that will fit in the input track size. The maximum number of
output buffers used by IEHMOVE is two times the number of buffers that will fit
in the output track size.

308 DFSMS/MVS V1R5 Utilities

 IEHMOVE

If space for the minimum of four buffers is not available, a single buffer is used
and message IEH476I is issued.

You can code this parameter in the JOB statement rather than the EXEC state-
ment, if you prefer. For details on how to code the REGION parameter, see
OS/390 MVS JCL Reference.

Message IEH477I, describing the number and size of your buffers, will be
issued each time multiple BSAM buffers are used. If you do not specify your
region size to achieve the maximum number of buffers, the last line of the
message will indicate the amount by which the value of the REGION parameter
should be increased in order to obtain the maximum number of buffers.

The execution time of an IEHMOVE move or copy operation will vary with the
number of buffers available, the size of the data sets, and the block size.

SYSPRINT DD Statement
The block size for the SYSPRINT data set must be a multiple of 121. Any blocking
factor can be specified.

SYSUT1 DD Statement
The SYSUT1 DD statement defines a DASD volume that IEHMOVE uses for its
work areas. The SYSUT1 DD statement must be coded:

//SYSUT1 DD UNIT=xxxx,VOL=SER=xxxxxx,DISP=OLD

The UNIT and VOLUME parameters define the device type and volume serial
number. The DISP=OLD specification prevents the inadvertent deletion of a data
set. The SYSUT1 DD statement cannot define an SMS-managed volume.

At least three utility work areas of 13, 13, and 26 contiguous tracks, respectively,
must be available for work space on the volume defined by the SYSUT1 DD state-
ment. (This figure is based on a 3380 being the work volume. If a direct access
device other than a 3380 is used, an equivalent amount of space must be avail-
able.)

IEHMOVE automatically calculates and allocates the amount of space needed for
the work areas. No SPACE parameter, therefore, should be coded in the SYSUT1
DD statement. However, you can increase the size of the work areas by coding the
POWER value in the PARM parameter of the EXEC statement.

Prior space allocations can be made by specifying a dummy execution of the
IEHPROGM utility program before the execution of IEHMOVE.

Note: IEHMOVE uses nonstandard data set names to allocate its work data sets.
The names start with one or more asterisks. These work data sets are
deleted at completion of the requested functions.

However, if IEHMOVE does not end normally (abend, system malfunction, and so
forth), these work data sets remain on the DASD volume and cannot be deleted
with any IBM utility. You must delete them by executing an IEFBR14 job and speci-
fying their data set names in single quotes with DISP=(OLD,DELETE).

 IEHMOVE (Move System Data) Program 309

 IEHMOVE

anyname DD Statement
A DD statement must be included for each permanently mounted or mountable
volume referred to in the job step. These DD statements are used to allocate
devices.

The DD statement should be coded:

//anyname1 DD UNIT=xxxx,VOL=SER=xxxxxx,DISP=OLD

The UNIT and VOLUME parameters define the device type and volume serial
number. The DISP=OLD specification prevents the inadvertent deletion of a data
set. The SPACE parameter prevents the creation of an extra data set that you
would later have to scratch.

You can also code the DSN parameter to identify a volume, if the data set you
name resides on that volume. When unloading a data set from one DASD volume
to another, this parameter is required for the data set to be unloaded. An unloaded
data set on a DASD volume can only be loaded to the same device type from
which it was unloaded.

For mountable volumes, when the number of volumes to be processed is greater
than the number of devices defined by DD statements, there must be an indication
(in the applicable DD statements) that multiple volumes are to be processed. This
indication can be in the form of deferred mounting, as follows:

 //anyname2 DD UNIT=(xxxx,,DEFER),VOL=(PRIVATE,...),
 // DISP=(...,KEEP)

Here, the PRIVATE indication in the VOL parameter is optional. Unit affinity cannot
be used on DD statements defining mountable devices.

tape DD Statement
The tape DD statement can be coded:

 //tape DD DSNAME=xxxxxxxx,UNIT=xxxx,VOLUME=SER=xxxxxx,
 // DISP=(...,KEEP),LABEL=(...,...),DCB=(TRTCH=C,DEN=x)

When unloading a data set from one DASD volume to another, the data set name
(DSN=) must be coded on the DD statement for the data set to be unloaded. An
unloaded data set on a DASD volume can only be loaded to the same device type
from which it was unloaded.

A utility control statement parameter refers to the tape DD statement for label and
mode information.

The date on which a data set is moved or copied to a magnetic tape volume is
automatically recorded in the HDR1 record of a standard tape label if a TODD
parameter is specified in a utility control statement. An expiration date can be spec-
ified by including the EXPDT or RETPD subparameters of the LABEL keyword in
the DD statement referred to by a TODD parameter.

A sequence number, for a data set on a tape volume, or a specific device number
(for example, unit address 190), must be specified on a utility control statement
instead of a reference to a DD statement. To move or copy a data set from or to a
tape volume containing more than one data set, specify the sequence number of
the data set in the utility control statement. To move or copy a data set from or to a

310 DFSMS/MVS V1R5 Utilities

 IEHMOVE

specific device, specify the unit address (rather than a group name or device type)
in the utility control statement. To copy to a unit record or unlabeled tape volume,
specify any standard name or number in the utility control statement.

The tape DD statement can be used to communicate DCB attributes of data sets
residing on tape volumes that do not have standard labels to IEHMOVE. If no DCB
attributes are specified, an undefined record format and a block size of 2560 are
assumed. However, in order to recognize unloaded data sets on an unlabeled tape
volume, the DCB attributes must be specified as follows:

 DCB=(RECFM=FB,LRECL=8ð,BLKSIZE=8ðð).

SYSIN DD Statement
The block size for the SYSIN data set must be a multiple of 80. Any blocking factor
can be specified.

Utility Control Statements
IEHMOVE is controlled by the utility control statements shown in Figure 107.

In addition, there are four subordinate control statements that can be used to
modify the effect of a MOVE DSGROUP, COPY DSGROUP, MOVE PDS, COPY
PDS, MOVE CATALOG, or COPY CATALOG operation. The subordinate control
statements are:

� INCLUDE statement, which is used to enlarge the scope of a MOVE
DSGROUP (with CVOL), COPY DSGROUP (with CVOL), MOVE PDS, or
COPY PDS statement by including a member or data set not explicitly included
by the statement it modifies.

� EXCLUDE statement, which is used with a MOVE DSGROUP (with CVOL),
COPY DSGROUP (with CVOL), MOVE PDS, COPY PDS, MOVE CATALOG,
or COPY CATALOG statement to exclude data sets, a member or CVOL
entries from a move or copy operation.

Figure 107. IEHMOVE Utility Control Statements

Statement Use

MOVE DSNAME Moves a data set.

COPY DSNAME Copies a data set.

MOVE DSGROUP Moves a group of cataloged partitioned, sequential or BDAM cata-
loged data sets.

COPY DSGROUP Copies a group of cataloged partitioned, sequential or BDAM cata-
loged data sets.

MOVE PDS Moves a partitioned data set.

COPY PDS Copies a partitioned data set.

MOVE VOLUME Moves a volume of data sets.

COPY VOLUME Copies a volume of data sets.

MOVE CATALOG Moves CVOL entries.

COPY CATALOG Copies CVOL entries.

 IEHMOVE (Move System Data) Program 311

 IEHMOVE

� REPLACE statement, which is used with a MOVE PDS or COPY PDS state-
ment to exclude a member from a move or copy operation and to replace it
with a member from another partitioned data set.

� SELECT statement, which is used with MOVE PDS or COPY PDS statements
to select members to be moved or copied and, optionally, to rename the speci-
fied members.

Continuation requirements for utility control statements are described in “Continuing
Utility Control Statements” on page 8.

MOVE DSNAME and COPY DSNAME Statements
The MOVE DSNAME statement is used to move a data set. The source data set is
scratched. If the data set is cataloged (in an CVOL, integrated catalog facility or
VSAM catalog), the catalog is automatically updated unless UNCATLG and FROM
are specified.

The COPY DSNAME statement is used to copy a data set. The source data set, if
cataloged, remains cataloged unless UNCATLG or CATLG is specified without the
RENAME and FROM parameters. The source data set is not scratched in a copy.

The syntax of the MOVE DSNAME and COPY DSNAME statements is:

where:

DSNAME=name
specifies the fully qualified name of the data set to be moved or copied.

TO=device={serial| (list)}
specifies the device type and volume serial number of the volume or volumes
to which the specified data set is to be moved or copied. If the data set resides
on more than one volume, code the list of volume serial numbers in paren-
theses, separating the numbers with commas.

FROM=device={serial|(list)}
specifies the device number or device type and serial number of the volume on
which the data set resides. If the data set resides on more than one volume,
enclose the list of serial numbers within parentheses, separating the numbers
with commas.

If the data set is cataloged, do not code “FROM.”

If you want to specify a specific device rather than device type, code the device
number in the device subparameter.

[label] {MOVE| DSNAME=name
 COPY} ,TO=device={serial|(list)}

[,{FROM=device={serial| (list)}|
CVOL=device=serial}]
[,UNCATLG]
[,CATLG]
[,RENAME=name]
[,FROMDD=ddname]
 [,TODD=ddname]
[,UNLOAD]
 [,COPYAUTH]

Note: CATLG may only be coded with COPY DSNAME

312 DFSMS/MVS V1R5 Utilities

 IEHMOVE

When FROM is used with MOVE DSNAME, the catalog will not be updated.

If the data set resides on a tape device, the serial number must be enclosed in
parentheses, and the data set sequence number must be included as follows:
“(serial,sequence number).”

If FROM and CVOL are omitted, the data set is assumed to be cataloged in the
integrated catalog facility catalog or the VSAM master/JOBCAT/STEPCAT
catalog. FROM and CVOL should never be coded in the same statement.

CVOL=device=serial
specifies the device type and serial number of the CVOL on which the search
for the data set is to begin. If the CVOL or FROM parameter is omitted, the
data set is assumed to be cataloged in the integrated catalog facility or VSAM
master/JOBCAT/STEPCAT catalog.

FROM and CVOL should never appear in the same utility control statement.

UNCATLG
specifies that the catalog entry pertaining to the source data set is to be
removed. This parameter should be used only if the source data set is cata-
loged. If the volume is identified by FROM, UNCATLG is ignored. Alias entries
in integrated catalog facility or VSAM catalogs for the source data set is lost
and can be replaced with access method services if the data set is later cata-
loged. For more information, see the DELETE command in DFSMS/MVS
Access Method Services for ICF . For a MOVE operation, UNCATLG inhibits
cataloging of the output data set.

CATLG
specifies that the copied data sets are to be cataloged as described below:

1. If the CVOL parameter is omitted, the cataloging is done in the integrated
catalog facility or VSAM master/JOBCAT/STEPCAT catalog.

2. If the RENAME and FROM parameters are omitted, the entries for the
source data sets are deleted from the appropriate catalog to permit the
copied data sets to be recataloged.

3. If the CVOL parameter is specified, the cataloging is done in the CVOL on
the receiving DASD volume. If an CVOL does not exist on the receiving
DASD volume, one is created.

For proper results, this control statement option must be used instead of speci-
fying the “CATLG” option in the “DISP” parameter in the DD statements.

CATLG may only be coded with COPY DSNAME.

RENAME=name
specifies that the data set is to be renamed, and indicates the new name.

FROMDD=ddname
specifies the name of the DD statement from which DCB and LABEL informa-
tion, except data set sequence number, can be obtained for input data sets on
tape volumes. The FROMDD operand can be omitted, if the data set has
standard labels and resides on a 9-track tape volume.

TODD=ddname
specifies the name of a DD statement from which DCB (except RECFM,
BLKSIZE and LRECL) and LABEL (except data set sequence number) informa-
tion for an output data set on a tape volume can be obtained.

 IEHMOVE (Move System Data) Program 313

 IEHMOVE

The DD statement describes the mode and label information to be used when
creating the output data set on tape volumes. Record format, blocksize and
logical record length information, if coded, is ignored.

When UNLOAD is specified, it describes the mode and label information to be
used when unloading the data set. Record format, blocksize and logical record
length information, if coded, must specify (RECFM=FB, BLKSIZE=800,
LRECL=80).

TODD must be specified in the control statement when an expiration data
(EXPDT) or retention period (RETPD) is to be created or changed.

The TODD parameter can be omitted for 9-track tapes with standard labels and
default density for the unit type specified.

UNLOAD
specifies that the data set is to be unloaded to the receiving volumes.

COPYAUTH
specifies that the receiving data set is to be given the same access list as the
input data set, if the input data set is RACF protected and the output data set is
not preallocated.

MOVE DSGROUP and COPY DSGROUP Statements
The MOVE DSGROUP statement is used to move groups of data sets whose
names are partially qualified by one or more identical names. The data sets may be
cataloged on several catalogs (CVOL, integrated catalog facility or VSAM). Source
data sets are scratched. Data set groups to be moved must reside on DASD
volumes. Only data sets that could be moved by MOVE DSNAME or MOVE PDS
can be moved by MOVE DSGROUP. Alias entries in integrated catalog facility or
VSAM catalogs for the data sets are lost and can be replaced with access method
services. For more information, see DFSMS/MVS Access Method Services for ICF.

The COPY DSGROUP statement is used to copy groups of data sets whose
names are partially qualified by one or more identical names. The data sets may be
cataloged on several catalogs (CVOL, integrated catalog facility or VSAM). Only
data sets that can be copied with COPY DSNAME or COPY PDS can be copied
with COPY DSGROUP. Data set groups to be copied must reside on DASD
volumes.

INCLUDE and EXCLUDE statements, discussed later in this chapter, can be used
to add to or delete data sets from the group, if CVOL is specified.

MOVE DSGROUP operations cause the catalog to be updated automatically unless
UNCATLG is specified. COPY DSGROUP operations leave the source data sets
cataloged unless UNCATLG or CATLG is specified without the RENAME and
FROM parameters.

The syntax of the and COPY DSGROUP statements is:

314 DFSMS/MVS V1R5 Utilities

 IEHMOVE

where:

DSGROUP=[name]
specifies the cataloged data sets to be moved or copied. If name is a fully qual-
ified data set name, only that data set is not moved or copied. If name is one
or more qualifiers, but not fully qualified, all data sets whose names are quali-
fied by name are moved or copied. If name is omitted, all data sets whose
names are found in the searched catalog are moved or copied.

TO=device={serial|(list)}
specifies the device type and volume serial number of the volume or volumes
to which the specified group of data sets is to be moved or copied. If the group
of data sets is on more than one volume, code the list of serial numbers in
parentheses, separating the numbers with commas.

CVOL=device=serial
specifies the device type and serial number of the OS CVOL on which the
search for the data sets is to begin. If the CVOL parameter is omitted, the data
sets are assumed to be cataloged in the integrated catalog facility or VSAM
master/JOBCAT/STEPCAT catalog.

PASSWORD
specifies that password protected data sets are included in the operation. This
is not VSAM password protection, but the OS password scheme. If PASS-
WORD is omitted, only data sets that are not protected are copied or moved.

UNCATLG
specifies that the catalog entries pertaining to the source data sets are to be
removed. This parameter should be used only if the source data set is cata-
loged. If the volume is identified by FROM, UNCATLG is ignored. Alias entries
in integrated catalog facility or VSAM catalogs for the source data sets are lost
and can be replaced with access method services if the data sets are later cat-
aloged. For more information, see DFSMS/MVS Access Method Services for
ICF . For a MOVE operation, UNCATLG inhibits cataloging of the output data
sets.

CATLG
specifies that the copied data sets are to be cataloged as described below.

1. If the CVOL parameter is omitted, the cataloging is done in the integrated
catalog facility or VSAM master/JOBCAT/STEPCAT catalog.

2. If the CVOL parameter is specified, the cataloging is done in the CVOL on
the receiving DASD volume. If an CVOL does not exist on the receiving
DASD volume, one is created.

[label] {MOVE| DSGROUP[=name]
 COPY} ,TO=device={serial|(list)}

 [,CVOL=device=serial]
 [,PASSWORD]
 [,UNCATLG]
 [,CATLG]
[,TODD=ddname]
 [,UNLOAD]
[,COPYAUTH]

Note: CATLG may only be coded with COPY DSGROUP

 IEHMOVE (Move System Data) Program 315

 IEHMOVE

For proper results, this control statement option must be used instead of speci-
fying the “CATLG” option in the “DISP” parameter in the DD statements.

CATLG may only be coded with COPY DSGROUP.

TODD=ddname
specifies the name of a DD statement from which DCB (except RECFM,
BLKSIZE and LRECL) and LABEL (except data set sequence number) informa-
tion for output data sets on tape volumes can be obtained.

The DD statement describes the mode and label information to be used when
creating output data sets on tape volumes. Record format, blocksize and logical
record length information, if coded, is ignored.

When UNLOAD is specified, it describes the mode and label information to be
used when creating unloaded versions of data sets on tape volumes. Record
format, blocksize and logical record length information, if coded, must specify
(RECFM=FB, BLKSIZE=800, LRECL=80).

TODD must be specified in the control statement when an expiration data
(EXPDT) or retention period (RETPD) is to be created or changed.

The TODD parameter can be omitted for 9-track tapes with standard labels and
default density for the unit type specified.

UNLOAD
specifies that the data sets are to be unloaded to the receiving volumes.

COPYAUTH
specifies that the receiving data set is to be given the same access list as the
input data set, if the input data set is RACF protected and the output data set is
not preallocated.

MOVE PDS and COPY PDS Statements
The MOVE PDS statement is used to move partitioned data sets. When used in
conjunction with INCLUDE, EXCLUDE, REPLACE, or SELECT statements, the
MOVE PDS statement can be used to merge selected members of several parti-
tioned data sets or to delete members. The source data set is scratched.

The COPY PDS statement is used to copy partitioned data sets. When used in
conjunction with INCLUDE, EXCLUDE, REPLACE, or SELECT statements, the
COPY PDS statement can be used to merge selected members of several parti-
tioned data sets or to delete members.

If IEHMOVE is used to allocate space for an output partitioned data set, the MOVE
PDS or COPY PDS statements can be used to expand a partitioned directory.

If the receiving volume contains a partitioned data set with the same name, the two
data sets are merged.

MOVE PDS causes the appropriate catalog to be updated automatically unless
UNCATLG and FROM are specified. COPY PDS leaves the source data set cata-
loged unless UNCATLG or CATLG is specified without the RENAME and FROM
parameters.

The syntax of the MOVE PDS and COPY PDS statements is:

316 DFSMS/MVS V1R5 Utilities

 IEHMOVE

where:

PDS=name
specifies the fully qualified name (that is, the name with all its qualifiers, if any)
of the partitioned data set to be moved or copied.

TO=device={serial|list}
specifies the device type and volume serial number of the volume to which the
partitioned data set is to be moved or copied. If you are unloading the parti-
tioned data set to multiple tape volumes, code the list of serial numbers in
parentheses, separating the numbers with commas.

FROM=device=serial
specifies the device type and serial number of the volume on which the data
set resides.

If the data set is cataloged, do not code “FROM.”

If you want to specify a specific device rather than device type, code the device
number in the device subparameter.

When FROM is used with MOVE PDS, the catalog will not be updated.

If FROM and CVOL are omitted, the data set is assumed to be cataloged in the
integrated catalog facility catalog or the VSAM master/JOBCAT/STEPCAT
catalog. FROM and CVOL should never be coded in the same statement.

CVOL=device=serial
specifies the device type and serial number of the CVOL on which the search
for the data set is to begin. If the CVOL or FROM parameter is omitted, the
data set is assumed to be cataloged in the integrated catalog facility or VSAM
master/JOBCAT/STEPCAT catalog.

FROM and CVOL should never appear in the same utility control statement.

EXPAND=nn
specifies the decimal number (up to 99) of 256-byte records to be added to the
directory of the specified partitioned data set. For COPY, EXPAND cannot be
specified if space is previously allocated. For MOVE, EXPAND will be ignored if
space is previously allocated.

UNCATLG
specifies that the catalog entry pertaining to the source partitioned data set is to
be removed. This parameter should be used only if the source data set is cata-
loged. If the volume is identified by FROM, UNCATLG is ignored. Alias entries
in integrated catalog facility or VSAM catalogs for the source data set is lost
and can be replaced with access method services if the data set is later cata-

[label] {MOVE| PDS=name
 COPY} ,TO=device={serial|list}

[,{FROM=device=serial| CVOL=device=serial}]
 [,EXPAND=nn]
 [,UNCATLG]
[,CATLG]
[,RENAME=name]
 [,FROMDD=ddname]
 [,TODD=ddname]
 [,UNLOAD]
[,COPYAUTH]

Note: CATLG may only be coded with COPY PDS

 IEHMOVE (Move System Data) Program 317

 IEHMOVE

loged. For more information, see DFSMS/MVS Access Method Services for
ICF. For a MOVE operation, UNCATLG inhibits cataloging of the output data
set.

CATLG
specifies that the copied data sets are to be cataloged as described below.

1. If the CVOL parameter is omitted, the cataloging is done in the integrated
catalog facility or VSAM master/JOBCAT/STEPCAT catalog.

2. If the RENAME and FROM parameters are omitted, the entries for the
source data sets are deleted from the appropriate catalog to permit the
copied data sets to be recataloged.

3. If the CVOL parameter is specified, the cataloging is done in the CVOL on
the receiving DASD volume. If an CVOL does not exist on the receiving
DASD volume, one is created.

For proper results, this control statement option must be used instead of speci-
fying the “CATLG” option in the “DISP” parameter in the DD statements.

CATLG may only be coded with COPY PDS.

RENAME=name
specifies that the data set is to be renamed, and indicates the new name.

FROMDD=ddname
specifies the name of the DD statement from which DCB and LABEL informa-
tion, except data set sequence number, can be obtained for input data sets on
tape volumes. The tape data set must be an unloaded version of a partitioned
data set. The FROMDD operand can be omitted if the data set has standard
labels and resides on a 9-track tape volume.

TODD=ddname
specifies the name of a DD statement from which DCB (except RECFM,
BLKSIZE and LRECL) and LABEL (except data set sequence number) informa-
tion for the output data set can be obtained, when the data set is being
unloaded to tape. Record format, blocksize and logical record length informa-
tion, if coded, must specify (RECFM=FB, BLKSIZE=800, LRECL=80).

TODD must be specified in the control statement when an expiration data
(EXPDT) or retention period (RETPD) is to be created or changed.

The TODD parameter can be omitted for 9-track tapes with standard labels and
default density for the unit type specified.

UNLOAD
specifies that the data set is to be unloaded to the receiving volumes.

COPYAUTH
specifies that the receiving data set is to be given the same access list as the
input data set, if the input data set is RACF protected and the output data set is
not preallocated.

318 DFSMS/MVS V1R5 Utilities

 IEHMOVE

MOVE CATALOG and COPY CATALOG Statements
The MOVE CATALOG statement is used to move the entries of an OS CVOL
(SYSCTLG data set) without moving the data sets associated with those entries.
Certain entries can be excluded from the operation by means of the EXCLUDE
statement. If the receiving volume already contains an CVOL, the source CVOL
entries are merged with it.

The COPY CATALOG statement is used to copy the entries of an CVOL
(SYSCTLG data set) without copying the data sets associated with those entries.
Certain entries can be excluded from a copy operation with the EXCLUDE state-
ment. If the receiving volume already contains an CVOL, the source CVOL is
merged with it.

The syntax of the MOVE CATALOG and COPY CATALOG statements is:

where:

CATALOG[= name]
specifies the CVOL entries to be moved or copied. If name is not coded, all
entries in the CVOL are moved or copied. If name is coded, all CVOL entries
whose names are qualified by this name are moved or copied. If the name is a
fully qualified data set name, (for example, AAA.BBB.CC), only the CVOL entry
that corresponds to that data set is moved or copied.

TO=device={serial|list}
specifies the device type and volume serial number of the volume to which the
CVOL entries to be moved or copied. If you are unloading the CVOL entries to
multiple tape volumes, list the serial numbers in parentheses, separating the
numbers with commas.

FROM=device={serial|(list)}
specifies the device type and serial number of the volume on which an
unloaded version of the CVOL resides. If the data set resides on more than
one volume, enclose the list of serial numbers within parentheses, separating
the numbers with commas.

If you want to specify a specific device rather than device type, code the device
number in the device subparameter.

If the unloaded CVOL resides on a tape device, the serial number must be
enclosed in parentheses, and the data set sequence number must be included
as follows: “(serial,sequence number).”

Either FROM or CVOL should be specified. If neither is specified, IEHMOVE
tries to use the system residence volume as the default. This may lead to
errors if the volume is dynamic. FROM and CVOL should never be coded in the
same statement.

[label] {MOVE| CATALOG[= name]
 COPY} ,TO=device={serial|list}

[,{FROM=device={serial| (list)}|
CVOL=device=serial}]
 [,FROMDD=ddname]
 [,TODD=ddname]
 [,UNLOAD]
 [,COPYAUTH]

 IEHMOVE (Move System Data) Program 319

 IEHMOVE

CVOL=device=serial
specifies the device type and serial number of the volume from which the
SYSCTLG data set is to be moved or copied. Either FROM or CVOL should be
specified, but you cannot specify both of them in the same statement.

FROMDD=ddname
specifies the name of the DD statement from which DCB and LABEL informa-
tion, except data set sequence number, can be obtained for input data sets on
tape volumes. The tape data set must be an unloaded version of an CVOL.
The FROMDD operand can be omitted if the data set has standard labels and
resides on a 9-track tape volume.

TODD=ddname
specifies the name of a DD statement from which DCB (except RECFM,
BLKSIZE and LRECL) and LABEL (except data set sequence number) informa-
tion for the output data set can be obtained when you are unloading the CVOL
to tape. Record format, blocksize and logical record length information, if
coded, must specify (RECFM=FB, BLKSIZE=800, LRECL=80).

TODD must be specified in the control statement when an expiration data
(EXPDT) or retention period (RETPD) is to be created or changed.

The TODD parameter can be omitted for 9-track tapes with standard labels and
default density for the unit type specified.

UNLOAD
specifies that the CVOL is to be unloaded to the receiving volumes.

COPYAUTH
specifies that the receiving data set is to be given the same access list as the
input data set, if the input data set is RACF protected and the output data set is
not preallocated.

MOVE VOLUME and COPY VOLUME Statements
The MOVE VOLUME statement is used to move all the data sets residing on a
specified volume. The COPY VOLUME statement is used to copy all the data sets
residing on a specified volume.

Any catalog entries associated with the data sets remain unchanged. Data sets to
be moved or copied must reside on DASD volumes.

If you specify CATLG and CVOL during a COPY VOLUME, error messages indi-
cating that an inconsistent index structure exists are issued when the source
SYSCTLG data set entries are merged into the CVOL on the receiving volume.
(Because the SYSCTLG data set is the last to be copied, only those entries repres-
enting cataloged data sets not residing on the source volume are copied into a
receiving volume's SYSCTLG data set; entries representing all data sets residing
on the source volume have already been made in the receiving SYSCTLG data
set.)

The syntax of the MOVE VOLUME and COPY VOLUME statements is:

320 DFSMS/MVS V1R5 Utilities

 IEHMOVE

where:

VOLUME=device=serial
specifies the device type and volume serial number of the source volume.

TO=device=serial
specifies the device type and volume serial number of the volume to which the
volume of data sets is to be moved or copied.

PASSWORD
specifies that password protected data sets are included in the operation. This
is not VSAM password protection, but the OS password scheme. If PASS-
WORD is omitted, only data sets that are not protected are copied or moved.

CATLG
specifies that the copied data sets are to be cataloged in the integrated catalog
facility or VSAM master/JOBCAT/STEPCAT catalog.

For proper results, this control statement option must be used instead of speci-
fying the “CATLG” option in the “DISP” parameter in the DD statements.

CATLG may only be coded with COPY VOLUME.

TODD=ddname
specifies the name of a DD statement from which DCB (except RECFM,
BLKSIZE and LRECL) and LABEL (except data set sequence number) informa-
tion for output data sets on tape volumes can be obtained.

The DD statement describes the mode and label information to be used when
creating output data sets on tape volumes. Record format, blocksize and logical
record length information, if coded, is ignored.

When UNLOAD is specified, it describes the mode and label information to be
used when creating unloaded versions of data sets on tape volumes. Record
format, blocksize and logical record length information, if coded, must specify
(RECFM=FB, BLKSIZE=800, LRECL=80).

TODD must be specified in the control statement when an expiration data
(EXPDT) or retention period (RETPD) is to be created or changed.

The TODD parameter can be omitted for 9-track tapes with standard labels and
default density for the unit type specified.

UNLOAD
specifies that the data sets are to be unloaded to the receiving volumes.

COPYAUTH
specifies that the receiving data set is to be given the same access list as the
input data set, if the input data set is RACF protected and the output data set is
not preallocated.

[label] {MOVE| VOLUME=device=serial
 COPY} ,TO=device=list

[,PASSWORD]
[,CATLG]
[,TODD=ddname]
 [,UNLOAD]
 [,COPYAUTH]

Note: CATLG may only be coded with COPY VOLUME

 IEHMOVE (Move System Data) Program 321

 IEHMOVE

 INCLUDE Statement
The INCLUDE statement is used to enlarge the scope of MOVE DSGROUP, COPY
DSGROUP, MOVE PDS, or COPY PDS statements by including a member or a
data set not explicitly defined in those statements. The INCLUDE statement follows
the MOVE or COPY statement whose function it modifies. The record character-
istics of the included partitioned data sets must be compatible with those of the
other partitioned data sets being moved or copied.

Any number of INCLUDE statements can modify a MOVE or COPY statement. For
a partitioned data set, the INCLUDE statement is invalid when data is unloaded or
when unloaded data is moved or copied. For DSGROUP operations, INCLUDE is
invalid unless CVOL has been specified on the MOVE DSGROUP or COPY
DSGROUP control statement.

The syntax of the INCLUDE statement is:

where:

DSNAME=name
specifies the fully qualified name of a data set. If used in conjunction with
MOVE or COPY DSGROUP, the named data set is included in the group. If
used in conjunction with MOVE or COPY PDS, either the named partitioned
data set or a member of it (if the MEMBER parameter is specified) is included
in the operation.

MEMBER=membername
specifies the name of one member in the partitioned data set named in the
DSNAME parameter. The named member is merged with the partitioned data
set being moved or copied. Neither the partitioned data set containing the
named member nor the member is scratched.

FROM=device={serial|(list)}
specifies the device type and serial number of the volume on which the data
sets to be included reside. If the data sets reside on more than one volume,
enclose the list of serial numbers within parentheses, separating the numbers
with commas.

If the data set is cataloged, do not code “FROM.”

If you want to specify a specific device rather than device type, code the device
number in the device subparameter.

If the data set resides on a tape device, the serial number must be enclosed in
parentheses, and the data set sequence number must be included as follows:
“(serial,sequence number).”

If FROM and CVOL are omitted, the data sets are assumed to be cataloged in
the integrated catalog facility catalog or the VSAM master/JOBCAT/STEPCAT
catalog. FROM and CVOL should never be coded in the same statement.

[label] INCLUDE DSNAME=name
[,MEMBER=membername]
[,{FROM=device={serial| (list)|
 CVOL=device=serial}]

322 DFSMS/MVS V1R5 Utilities

 IEHMOVE

CVOL=device=serial
specifies the device type and serial number of the CVOL on which the search
for the data set is to begin. If the CVOL or FROM parameter is omitted, the
data set is assumed to be cataloged in the integrated catalog facility or VSAM
master/JOBCAT/STEPCAT catalog.

FROM and CVOL should never appear in the same utility control statement.

 EXCLUDE Statement
The EXCLUDE statement is used to restrict the scope of MOVE DSGROUP, COPY
DSGROUP, MOVE PDS, COPY PDS, MOVE CATALOG, or COPY CATALOG
statements by excluding a specific portion of data defined in those statements.

Partitioned data set members excluded from a MOVE PDS operation cannot be
recovered (the source data set is scratched). Any number of EXCLUDE statements
can modify a MOVE PDS or COPY PDS statement.

Source data sets or CVOL entries excluded from a MOVE DSGROUP or MOVE
CATALOG operation remain available. Only one EXCLUDE statement can modify a
MOVE DSGROUP, COPY DSGROUP, MOVE CATALOG, or COPY CATALOG
statement. The EXCLUDE statement is invalid when data is unloaded or when
unloaded data is moved or copied. The EXCLUDE statement is invalid for a
DSGROUP operation unless CVOL is specified on the MOVE DSGROUP or COPY
DSGROUP control statement.

The syntax of the EXCLUDE statement is:

where:

DSGROUP=name
Specifies the cataloged data sets or the catalog entries to be excluded in when
moving a data set group or catalog. If used in conjunction with MOVE
DSGROUP or COPY DSGROUP, all cataloged data sets whose names are
qualified by name are excluded from the operation. If used in conjunction with
MOVE CATALOG or COPY CATALOG, all catalog entries whose names are
qualified by name are excluded from the operation.

If you use the DSGROUP parameter with a MOVE or COPY DSGROUP, you
must code the CVOL parameter on the MOVE or COPY statement.

MEMBER=membername
specifies the name of a member to be excluded from a MOVE or COPY PDS
operation.

[label] EXCLUDE {DSGROUP=name| MEMBER=membername}

 SELECT Statement
The SELECT statement is used with the MOVE PDS or COPY PDS statement to
select members to be moved or copied, and to optionally rename these members.
The SELECT statement cannot be used with either the EXCLUDE or REPLACE
statement to modify the same MOVE PDS or COPY PDS statement. The SELECT
statement is invalid when data is unloaded or when unloaded data is moved or
copied. Because the source data set is scratched, members not selected in a
MOVE PDS operation cannot be recovered.

 IEHMOVE (Move System Data) Program 323

 IEHMOVE

The syntax of the SELECT statement is:

where:

MEMBER={(name1[,name2][,...])| ((name1,newname1)[,(name2,newname2)][,...])}
specifies the names of the members to be moved or copied by a MOVE or
COPY PDS operation, and, optionally, new names to be assigned to the
members.

[label] SELECT MEMBER={(name1 [,name2][,...])|
 ((name1,newname1) [,(name2,newname2)][,...])}

 REPLACE Statement
The REPLACE statement is used with a MOVE PDS or COPY PDS statement to
exclude a member from the operation and replace it with a member from another
partitioned data set. The new member must have the same name as the old
member and must possess compatible record characteristics. Any number of
REPLACE statements can modify a MOVE PDS or COPY PDS statement. The
REPLACE statement is invalid when data is unloaded or when unloaded data is
moved or copied.

The syntax of the REPLACE statement is:

where:

DSNAME=name
specifies the fully qualified name of the partitioned data set that contains the
replacement member.

MEMBER=membername
specifies the name of one member in the partitioned data set named in the
DSNAME parameter. The member replaces an identically named member in
the partitioned data set being moved or copied. Neither the partitioned data set
containing the named member nor the member is scratched.

FROM=device=serial
specifies the device type and serial number of the volume on which the data
set which contains the replacement member resides.

If the data set is cataloged, do not code “FROM.”

If you want to specify a specific device rather than device type, code the device
number in the device subparameter.

If FROM and CVOL are omitted, the data set is assumed to be cataloged in the
integrated catalog facility catalog or the VSAM master/JOBCAT/STEPCAT
catalog. FROM and CVOL should never be coded in the same statement.

CVOL=device=serial
specifies the device type and serial number of the CVOL on which the search
for the data set is to begin. If the CVOL or FROM parameter is omitted, the
data set is assumed to be cataloged in the integrated catalog facility or VSAM
master/JOBCAT/STEPCAT catalog.

[label] REPLACE DSNAME=name
,MEMBER=name
[,{FROM=device=serial|CVOL=device=serial}]

324 DFSMS/MVS V1R5 Utilities

 IEHMOVE

FROM and CVOL should never appear in the same utility control statement.

 IEHMOVE Examples
The following examples illustrate some of the uses of IEHMOVE. Figure 108 on
page 325 can be used as a quick-reference guide to IEHMOVE examples. The
numbers in the “Example” column refer to the examples that follow.

Figure 108. IEHMOVE Example Directory

Operation
Data Set Organiza-
tion Device Comments Example

MOVE Data Set Group Disk Data set group is moved. 8

MOVE CVOL Disk SYSCTLG data set (CVOL) is moved
from one volume to another. Source
CVOL is scratched.

9

MOVE CVOL Disk Selected CVOL entries are moved
from one CVOL to another.

10

MOVE Partitioned Disk A partitioned data set is moved; a
member from another partitioned
data set is merged with it.

2

MOVE Partitioned Disk A data set is moved to a volume on
which space was previously allo-
cated.

4

MOVE Partitioned Disk Three data sets are moved and
unloaded to a volume on which
space was previously allocated.

5

MOVE Sequential Disk Source volume is demounted after
job completion. Two mountable disks.

1

MOVE Sequential Disk and
Tape

A sequential data set is unloaded to
an unlabeled 9-track tape volume.

6

MOVE Sequential Disk and
Tape

Unloaded data sets are loaded from
a single volume.

7

MOVE Volume Disk A volume of data sets is moved to a
disk volume.

3

| Examples that use disk or tape in place of actual device names or numbers must
| be changed before use. The actual device names or numbers depend on how your
| installation has defined the devices to your system.

Example 1: Move Sequential Data Sets from Disk Volume to Separate
Volumes

In this example, three sequential data sets (SEQSET1, SEQSET2, and SEQSET3)
are moved from a disk volume to three separate disk volumes. Each of the three
receiving volumes is mounted when it is required by IEHMOVE. The source data
sets are not cataloged. Space is allocated by IEHMOVE.

 IEHMOVE (Move System Data) Program 325

 IEHMOVE

 //MOVEDS JOB ...
 //STEP1 EXEC PGM=IEHMOVE
 //SYSPRINT DD SYSOUT=A
 //SYSUT1 DD UNIT=disk,VOLUME=SER=333333,DISP=OLD
 //DD1 DD UNIT=disk,VOLUME=SER=111111
 //DD2 DD UNIT=(disk,,DEFER),DISP=OLD,
 // VOLUME=(PRIVATE,,SER=(222222))
 //DD3 DD VOLUME=(PRIVATE,RETAIN,SER=(444444)),
 // UNIT=disk,DISP=OLD
 //SYSIN DD \
 MOVE DSNAME=SEQSET1,TO=disk=222222,FROM=disk=444444
 MOVE DSNAME=SEQSET2,TO=disk=222333,FROM=disk=444444
 MOVE DSNAME=SEQSET3,TO=disk=222444,FROM=disk=444444
 /\

The control statements are discussed below:

� SYSUT1 DD defines the disk device that is to contain the work data set.

� DD1 DD defines the system residence device.

� DD2 DD defines the device on which the receiving volumes will be mounted as
they are required.

� DD3 DD defines a device on which the source volume is mounted. Because
the RETAIN subparameter is included, the volume remains mounted until the
job has completed.

� SYSIN DD defines the control data set, which follows in the input stream.

� MOVE moves the source data sets to volumes 222222, 222333, and 222444,
respectively. The source data sets are scratched.

Example 2: Move Partitioned Data Set to Disk Volume and Merge
In this example, a partitioned data set (PARTSET1) is moved to a disk volume. In
addition, a member (PARMEM3) from another partitioned data set (PARTSET2) is
merged with the source members on the receiving volume. The source partitioned
data set (PARTSET1) is scratched. Space is allocated by IEHMOVE.

 //MOVEPDS JOB ...
 //STEP1 EXEC PGM=IEHMOVE
 //SYSPRINT DD SYSOUT=A
 //SYSUT1 DD UNIT=disk,VOLUME=SER=333ððð,DISP=OLD
 //DD1 DD UNIT=disk,VOLUME=SER=111111,DISP=OLD
 //DD2 DD UNIT=disk,VOLUME=SER=222111,DISP=OLD
 //DD3 DD UNIT=disk,VOLUME=SER=222222,DISP=OLD
 //DD4 DD UNIT=disk,VOLUME=SER=222333,DISP=OLD
 //SYSIN DD \
 MOVE PDS=PARTSET1,TO=disk=222333,FROM=disk=222111
 INCLUDE DSNAME=PARTSET2,MEMBER=PARMEM3,FROM=disk=222222
 /\

The control statements are discussed below:

� SYSUT1 DD defines the disk volume that is to contain the work data set.

� DD1 DD defines the system residence device.

� The DD2, DD3, and DD4 DD statements define devices that are to contain the
two source volumes and the receiving volume.

326 DFSMS/MVS V1R5 Utilities

 IEHMOVE

� SYSIN DD defines the control data set, which follows in the input stream.

� MOVE defines the source partitioned data set, the volume that contains it, and
its receiving volume.

� INCLUDE includes a member from a second partitioned data set in the opera-
tion.

Example 3: Move Volume of Data Sets to Disk Volume
In this example, a volume of data sets is moved to a disk volume. All data sets that
are successfully moved are scratched from the source volume; however, any
catalog entries pertaining to those data sets are not changed. Space is allocated
by IEHMOVE.

 //MOVEVOL JOB ...
 //STEP1 EXEC PGM=IEHMOVE
 //SYSPRINT DD SYSOUT=A
 //SYSUT1 DD UNIT=disk,VOLUME=SER=222222,DISP=OLD
 //DD1 DD UNIT=disk,VOLUME=SER=111111,DISP=OLD
 //DD2 DD UNIT=disk,VOLUME=SER=222222,DISP=OLD
 //DD3 DD UNIT=disk,VOLUME=SER=333333,DISP=OLD
 //SYSIN DD \
 MOVE VOLUME=disk=333333,TO=disk=222222,PASSWORD
 /\

The control statements are discussed below:

� SYSUT1 DD defines the device that is to contain the work data set.

� DD1 DD defines the system residence device.

� DD2 DD defines the device on which the receiving volume is mounted.

� DD3 DD defines a device on which the source volume is mounted.

� SYSIN DD defines the control data set, which follows in the input stream.

� MOVE specifies a move operation for a volume of data sets and defines the
source and receiving volumes. This statement also indicates that password-
protected data sets are included in the operation.

Example 4: Move Partitioned Data Set to Allocated Space
In this example, a partitioned data set is moved to a disk volume on which space
has been previously allocated for the data set. The source data set is scratched.

 //MOVEPDS JOB ...
 //STEP1 EXEC PGM=IEHMOVE
 //SYSPRINT DD SYSOUT=A
 //SYSUT1 DD UNIT=disk,VOLUME=SER=222222,DISP=OLD
 //DD1 DD UNIT=disk,VOLUME=SER=111111,DISP=OLD
 //DD2 DD UNIT=disk,VOLUME=SER=222222,DISP=OLD
 //DD3 DD UNIT=disk,VOLUME=SER=333333,DISP=OLD
 //SYSIN DD \
 MOVE PDS=PDSSET1,TO=disk=222222,FROM=disk=333333
 /\

The control statements are discussed below:

� SYSUT1 DD defines the device that is to contain the work data set.

� DD1 DD defines the system residence device.

 IEHMOVE (Move System Data) Program 327

 IEHMOVE

� DD2 DD defines the device on which the receiving volume is to be mounted.

� DD3 DD defines a device on which the source volume is mounted.

� SYSIN DD defines the control data set, which follows in the input stream.

� MOVE specifies a move operation for the partitioned data set PDSSET1 and
defines the source and receiving volumes.

Example 5: Move and Unload Partitioned Data Sets Volume
In this example, three partitioned data sets are moved from three separate source
volumes to a disk volume. The source data set PDSSET3 is unloaded. (The record
size exceeds the track capacity of the receiving volume.)

 //MOVEPDS JOB ...
 //STEP1 EXEC PGM=IEHMOVE
 //SYSPRINT DD SYSOUT=A
 //SYSUT1 DD UNIT=disk,VOLUME=SER=222222,DISP=OLD
 //DD1 DD UNIT=disk,VOLUME=SER=111111,DISP=OLD
 //DD2 DD UNIT=(disk,,DEFER),DISP=OLD,
 // VOLUME=(PRIVATE,,SER=(333333))
 //DD3 DD UNIT=disk,VOLUME=SER=222222,DISP=OLD
 //SYSIN DD \
 MOVE PDS=PDSSET1,TO=disk=222222,FROM=disk=333333
 MOVE PDS=PDSSET2,TO=disk=222222,FROM=disk=222222
 MOVE PDS=PDSSET3,TO=disk=222222,FROM=disk=444444,UNLOAD
 /\

PDSSET1, PDSSET2, and PDSSET3 are already allocated on the receiving
volume. PDSSET3 is allocated as a sequential data set; PDSSET1 and PDSSET2
are allocated as partitioned data sets. Since PDSSET3 is moved to a sequential
data set, it is unloaded.

For a discussion of estimating space allocations, see DFSMS/MVS Using Data Sets
.

The DCB attributes of PDSSET3 are:

 DCB=(RECFM=U,BLKSIZE=5ððð)

The unloaded attributes are:

 DCB=(RECFM=FB,LRECL=8ð,BLKSIZE=8ðð)

The control statements are discussed below:

� SYSUT1 DD defines the device that is to contain the work data set.

� DD1 DD defines the system residence device.

� DD2 DD defines a device on which the source volumes are mounted as they
are required.

� DD3 DD defines a device on which the receiving volume is mounted.

� SYSIN DD defines the control data set, which follows in the input stream.

� MOVE specifies move operations for the partitioned data sets and defines the
source and receiving volumes for each data set.

328 DFSMS/MVS V1R5 Utilities

 IEHMOVE

Example 6: Unload Sequential Data Set onto Unlabeled Tape Volume
In this example, a sequential data set is unloaded onto a 9-track, unlabeled tape
volume (800 bits per inch).

 //UNLOAD JOB ...
 //STEP1 EXEC PGM=IEHMOVE
 //SYSPRINT DD SYSOUT=A
 //SYSUT1 DD UNIT=disk,VOLUME=SER=222222,DISP=OLD
 //DD1 DD UNIT=disk,VOLUME=SER=111111,DISP=OLD
 //DD2 DD UNIT=disk,VOLUME=SER=222222,DISP=OLD
 //TAPEOUT DD UNIT=tape,VOLUME=SER=SCRTCH,DISP=OLD,
 // DCB=(DEN=2,RECFM=FB,LRECL=8ð,BLKSIZE=8ðð),
 // LABEL=(,NL)
 //SYSIN DD \
 MOVE DSNAME=SEQSET1,TO=tape=SCRTCH,FROM=disk=222222,TODD=TAPEOUT
 /\

The control statements are discussed below:

� SYSUT1 DD defines the device that is to contain the work data set.

� DD1 DD defines the system residence device.

� DD2 DD defines a device on which the source volume is mounted.

� TAPEOUT DD defines a device on which the receiving tape volume is
mounted. This statement also provides label and mode information.

� SYSIN DD defines the control data set, which follows in the input stream.

� MOVE moves the sequential data set SEQSET1 from a disk volume to the
receiving tape volume. The data set is unloaded. The TODD parameter in this
statement refers to the TAPEOUT DD statement for label and mode informa-
tion.

Example 7: Load Unloaded Sequential Data Sets from Labeled Tape
In this example, three unloaded sequential data sets are loaded from a labeled,
7-track tape volume (556 bits per inch) to a disk volume. Space is allocated by
IEHMOVE. The example assumes that the disk volume is capable of supporting the
data sets in their original forms.

 72
 //LOAD JOB ...
 //STEP1 EXEC PGM=IEHMOVE
 //SYSPRINT DD SYSOUT=A
 //SYSUT1 DD UNIT=disk,VOLUME=SER=222222,DISP=OLD
 //DD1 DD UNIT=disk,VOLUME=SER=111111,DISP=OLD
 //DD2 DD UNIT=disk,VOLUME=SER=222222,DISP=OLD
 //TAPESETS DD UNIT=tape,VOLUME=SER=ðð1234,DISP=OLD,
 // LABEL=(1,SL),DCB=(DEN=1,TRTCH=C)
 //SYSIN DD \
 MOVE DSNAME=UNLDSET1,Tð=disk=222222, X
 FROM=tape=(ðð1234,1),FROMDD=TAPESETS
 MOVE DSNAME=UNLDSET2,TO=disk=222222, X
 FROM=tape=(ðð1234,2),FROMDD=TAPESETS
 MOVE DSNAME=UNLDSET3,TO=disk=222222, X
 FROM=tape=(ðð1234,3),FROMDD=TAPESETS
 /\

 IEHMOVE (Move System Data) Program 329

 IEHMOVE

The control statements are discussed below:

� SYSUT1 DD defines the device that is to contain the work data set.

� DD1 DD defines the system residence device.

� DD2 DD defines a device on which the receiving volume is mounted.

� TAPESETS DD defines a device on which the source tape volume is mounted.
DCB information is provided in this statement.

� SYSIN DD defines the control data set, which follows in the input stream.

� MOVE moves the unloaded data sets to the receiving volume.

To move a data set from a tape volume that contains more than one data set, you
must specify the sequence number of the data set in the list field of the FROM
parameter on the utility control statement.

Example 8: Move Cataloged Data Set Group
In this example, the cataloged data set group A.B.C—which comprises data set
A.B.C.X, A.B.C.Y, and A.B.C.Z—is moved from two disk volumes onto a third
volume. Space is allocated by IEHMOVE. The catalog is updated to refer to the
receiving volume. The source data sets are scratched.

 //MOVEDSG JOB ...
 //STEP1 EXEC PGM=IEHMOVE
 //SYSPRINT DD SYSOUT=A
 //SYSUT1 DD UNIT=disk,VOLUME=SER=222222,DISP=OLD
 //DD1 DD UNIT=disk,VOLUME=SER=111111,DISP=OLD
 //DD2 DD UNIT=disk,VOLUME=SER=222222,DISP=OLD
 //DD3 DD UNIT=disk,VOLUME=SER=333333,DISP=OLD
 //DD4 DD UNIT=disk,VOLUME=SER=444444,DISP=OLD
 //SYSIN DD \
 MOVE DSGROUP=A.B.C,TO=disk=222222
 /\

The control statements are discussed below:

� SYSUT1 DD defines the device that is to contain the work data set.
� DD1 DD defines the system residence device.
� DD2 DD defines a device on which the receiving volume is mounted.
� DD3 DD defines a device on which one of the source volumes is mounted.
� DD4 DD defines a device on which one of the source volumes is mounted.
� SYSIN DD defines the control data set, which follows in the input stream.
� MOVE moves the specified data sets to volume 222222.

This example can be used to produce the same result without the use of the DD4
DD statement, using one less mountable disk device. With DD3 and DD4, both of
the source volumes are mounted at the start of the job. With DD3 only, the 333333
volume is mounted at the start of the job. After the 333333 volume is processed,
the utility requests that the operator mount the 444444 volume. In this case, the
DD3 statement is coded:

//DD3 DD UNIT=(disk,,DEFER),DISP=OLD,
 // VOLUME=(PRIVATE,,SER=(333333))

330 DFSMS/MVS V1R5 Utilities

 IEHMOVE

Example 9: Move an CVOL
In this example, the SYSCTLG data set is moved from a mountable disk volume to
another mountable disk volume. Space is allocated by IEHMOVE. The source
CVOL is scratched from the first disk volume.

 //MOVECAT1 JOB ...
 //STEP1 EXEC PGM=IEHMOVE,PARM='POWER=3'
 //SYSPRINT DD SYSOUT=A
 //SYSUT1 DD UNIT=disk,VOLUME=SER=333333,DISP=OLD
 //DD1 DD UNIT=disk,VOLUME=SER=111111,DISP=OLD
 //DD2 DD UNIT=disk,VOLUME=SER=222222,DISP=OLD
 //SYSIN DD \
 MOVE CATALOG,TO=disk=222222,CVOL=disk=111111
 /\

The control statements are discussed below:

� SYSUT1 DD defines the device that is to contain the work data set. The
POWER parameter on the EXEC statement increases the default size of the
work data set by a power of three.

� DD1 DD defines the device on which the source volume is mounted.

� DD2 DD defines the device on which the receiving volume is mounted.

� SYSIN DD defines the control data set, which follows in the input stream.

� MOVE specifies the move operation and defines the source and receiving
volumes.

Example 10: Move Data Sets Cataloged in an CVOL
In this example, the CVOL entries for data set group A.B.C—which comprises the
entries A.B.C.X, A.B.C.Y, and A.B.C.Z—are moved from a SYSCTLG data set to a
mountable disk volume. If no CVOL exists on the receiving disk volume, one is
created; if an CVOL does exist, the specified entries are merged into it. Moved
entries are uncataloged from the source CVOL.

 //MOVECAT2 JOB ...
 //STEP1 EXEC PGM=IEHMOVE
 //SYSPRINT DD SYSOUT=A
 //SYSUT1 DD UNIT=disk,VOLUME=SER=222222,DISP=OLD
 //DD1 DD UNIT=disk,VOLUME=SER=111111,DISP=OLD
 //DD2 DD UNIT=disk,VOLUME=SER=222222,DISP=OLD
 //SYSIN DD \
 MOVE CATALOG=A.B.C,TO=disk=222222,CVOL=disk=111111
 /\

The control statements are discussed below:

� SYSUT1 DD defines the device that is to contain the work data set.

� DD1 DD defines the device on which the source volume is mounted.

� DD2 DD defines the device on which the receiving volume is mounted.

� SYSIN DD defines the control data set, which follows in the input stream.

� MOVE specifies a move operation for selected entries and defines the source
and receiving volumes.

 IEHMOVE (Move System Data) Program 331

 IEHMOVE

332 DFSMS/MVS V1R5 Utilities

 IEHPROGM

IEHPROGM (Program Maintenance) Program

IEHPROGM is a system utility used to modify system control data and to maintain
data sets at an organizational level. IEHPROGM should only be used by those pro-
grammers locally authorized to do so.

Note: IEHPROGM does not support dynamic UCBs while processing data sets
that are password protected.

IEHPROGM can be used to:

� Scratch (delete) a data set or a member of a partitioned data set.

� Rename a data set or a member of a partitioned data set.

� Catalog or remove catalog entries for a non-VSAM data set in a CVOL
(SYSCTLG data set).

� Build or delete an index or alias in a CVOL.

� Connect or release two CVOLs.

� Build and maintain a generation data group index in a CVOL.

� Maintain data set passwords.

You must have RACF authority in order to use IEHPROGM. For information on
RACF requirements for the Storage Management Subsystem, see DFSMS/MVS
DFSMSdfp Storage Administration Reference.

Note: IDCAMS is recommended for use with SMS managed data sets. For infor-
mation on IDCAMS see DFSMS/MVS Access Method Services for ICF.

Scratching or Renaming a Data Set or Member
IEHPROGM can be used to scratch the following from a DASD volume or volumes:

� Sequential, ISAM, BDAM, or partitioned data sets. They can be data sets
named by the operating system.

� Members of a partitioned data set.
� A temporary VSAM data set

A data set is considered scratched when its data set control block is removed from
the volume table of contents (VTOC) of the volume on which it resides; its space is
made available for reallocation.

A member is considered scratched when its name is removed from the directory of
the partitioned data set in which it is contained.

For partitioned data sets, the space occupied by a scratched member is not avail-
able for reallocation until the partitioned data set is scratched or compressed.
(When scratching a member of a partitioned data set, all aliases of that member
should also be removed from the directory.)

On SCRATCH requests, the presence of the PURGE or NOPURGE keyword may
be ignored for SMS managed data sets. The use of the PURGE and NOPURGE
keywords is unchanged for non-SMS managed data sets.

 Copyright IBM Corp. 1979, 1999 333

 IEHPROGM

� When OVRD_EXPDT(NO) is specified in the IGDSMSxx member of
SYS1.PARMLIB or the OVRD_EXPDT keyword is not specified, the PURGE
and NOPURGE keywords are honored.

� When OVRD_EXPDT(YES) is specified in the IGDSMSxx member of
SYS1.PARMLIB, the PURGE and NOPURGE keywords are not honored. The
data set is always deleted, whether or not it has expired. This is true only if the
data set is a DASD data set and SMS managed.

When scratching or renaming a data set managed by the Storage Management
Subsystem (SMS), the device type and volumes list on the VOL parameter must
reflect the volume actually allocated to the data set. This is a restriction for both
SMS and non-SMS managed data sets. However, when you specify a volume
when allocating an SMS-managed data set, SMS will not automatically allocate the
data set on that volume.

When scratching an SMS-managed data set, IEHPROGM will uncatalog that data
set.

You should use IDCAMS DELETE VR to delete uncataloged data sets on SMS
managed volumes. If you attempt to scratch an uncataloged data set on an
SMS-managed volume, IEHPROGM will ONLY scratch (an uncatalog) a cataloged
version of the data set, if one exists. When the specified volume in IEHPROGM is
found to be SMS managed, a Catalog locate is used to identify a volume containing
the data. The Catalog locate may return a different volume than specified in
IEHPROGM resulting in the wrong data set to be scratched.

When scratching or renaming a data set the device type and volumes list on the
VOL parameter must reflect the volume actually allocated to the data set.

IEHPROGM will not scratch the data set containing the index for an indexed
VTOC.

IEHPROGM can be used to rename a data set or member that resides on a DASD
volume. In addition, the program can be used to change any member aliases.

When renaming an SMS-managed data set, IEHPROGM will uncatalog the data set
and then catalog the data set under its new name in the appropriate catalog. If
uncataloging cannot be done, because of an alias, IEHPROGM will not rename the
data set.

Temporary VSAM data sets can be scratched using SCRATCH VTOC,SYS.

If RACF is active, ALTER authorization is required to scratch a RACF-defined data
set, or rename a data set, and UPDATE authorization is required to scratch or
rename a member of a partitioned data set.

Note: RACF, an IBM security package, will not allow you to rename a data set
that is covered only by a generic profile to a name that will not be covered
by a generic profile since this would allow you to unprotect the data set. For
more information, see OS/390 Security Server (RACF) Introduction.

334 DFSMS/MVS V1R5 Utilities

 IEHPROGM

Cataloging a Data Set in a CVOL
IEHPROGM can be used to catalog a non-VSAM sequential, ISAM, partitioned, or
BDAM data set in a CVOL or an integrated catalog facility catalog. The program
catalogs a data set by generating an entry, containing the data set name and asso-
ciated volume information, in the index of the CVOL. A valid TTR pointer is not
placed in the DSCB until the first time the data set is referenced.

You cannot use IEHPROGM to catalog or uncatalog (except by renaming or
scratching it) an SMS-managed data set. The CATLG and UNCATLG utility control
statements for IEHPROGM can only be used with data sets that are not managed
by SMS.

The catalog function is used to catalog a non-VSAM data set in a CVOL that was
not cataloged when it was created.

IEHPROGM can also delete entries for a non-VSAM data set in a CVOL or inte-
grated catalog facility catalog, by removing the data set name and associated
volume information from the CVOL or the integrated catalog facility catalog.

The cataloging function of IEHPROGM differs from a DISP=(,CATLG) specification
in a DD statement in that the DISP=(,CATLG) specification cannot catalog a data
set on a volume other than the system residence volume unless the system resi-
dence volume is properly connected to the other volume. (See “Connecting or
Releasing Two CVOLs” on page 337.)

The “uncataloging” function of IEHPROGM differs from a DISP=(...,UNCATLG)
specification in a DD statement in that the DISP=(...,UNCATLG) specification
cannot remove an entry from the SYSCTLG data set on a volume other than the
system residence volume unless the two volumes are properly connected.

You should not use the IEHPROGM CATLG/UNCATLG functions in place of
DISP=(,CATLG) or DISP=(,UNCATLG) in a multi-step job. If a data set is to be
“uncataloged” during termination of a step, use DISP=(OLD,UNCATLG).

You should not use the IEHPROGM CATLG/UNCATLG function concurrently while
another job is processing the target data set. Unallocation recatalogs existing cata-
loged data sets at job termination. This action occurs if during data set open proc-
essing, the DSCB TTR is not found in the catalog entry (no recataloging occurs for
this reason for RACF protected data sets opened for input). Therefore, conflicting
functions can be performed or GDG orientation lost if IEHPROGM is used to uncat-
alog and then catalog data sets with new volume information while those data sets
are open and being processed by another job.

Attention: Use of the CVOL parameter or JOBCAT/STEPCAT on CATLG requests
for SMS-managed data sets may result in double cataloging in the CVOL and inte-
grated catalog facility catalogs accessed by the multilevel alias facility of
SMS-managed data sets.

 IEHPROGM (Program Maintenance) Program 335

 IEHPROGM

Building or Deleting an Index Alias in a CVOL
IEHPROGM can be used to build a new index in a CVOL or to delete an existing
index. In building an index, the program automatically creates as many higher level
indexes as are necessary to complete the specified structure.

IEHPROGM can be used to delete one or more indexes from an index structure;
however, an index cannot be deleted if it contains any entries. That is, it cannot be
deleted if it refers to a lower level index or if it is part of a structure indicating the
fully qualified name of a CVOL cataloged data set.

Figure 109 shows an index structure before and after a build operation. The left
portion of the figure shows two data sets cataloged in a CVOL, A.Y.YY and
A.B.X.XX, before the build operation. The right-hand portion of the figure shows the
index structure after the build operation, which was used to build index A.B.C.D.E.
Note in the left portion of the figure that index levels C and D do not exist before
the build operation. These levels are automatically created when the level E index
is built.

When the level E index is subsequently deleted, the level C and D indexes are not
automatically deleted by the program. To delete these index levels, delete:
A.B.C.D.E, A.B.C.D, and A.B.C, in that order. The level B index cannot be deleted
because data set A.B.X.XX and the X level index are dependent upon the level B
index.

A.B.X.XX A.Y.YY A.B.X.XX

Before build operation After build operation

AA

B
B

C
D
E

X

Y

YY
XX

X

XX
YY

Y

A.Y.YY

Figure 109. Index Structure Before and After an IEHPROGM Build Operation

Building or Deleting an Index Alias in a CVOL
IEHPROGM can be used to assign an alternative name (alias) to the highest level
index of a CVOL or to delete a CVOL index alias previously assigned. An alias
cannot, however, be assigned to the highest level of a generation data group index.

Figure 110 on page 337 shows an alias, XX, that is assigned to index A (a high
level index). The cataloged data set A.B.C can be referred to as either A.B.C or
XX.B.C.

336 DFSMS/MVS V1R5 Utilities

 IEHPROGM

A
XX

B

C
A.B.C.

(XX.B.C.)

To
SYSCTLG

data set

Figure 110. Building an Index Alias Using IEHPROGM

Connecting or Releasing Two CVOLs
IEHPROGM can be used to connect a CVOL to a second CVOL by placing an
entry into a high level index on the first CVOL. The entry contains an index name
and the volume serial number and device type of the second CVOL. The program
can subsequently release the CVOLs by removing the entry from the high level
index. If two CVOLs are connected:

� The SYSCTLG data set must be created on the second volume for cataloging
of data sets having the same high level index as the connected index.

� A high level index can only be connected to one second CVOL, but chaining is
possible from a second to a third CVOL, and so forth.

Before any CVOL can be accessed by the system, it must be defined in the inte-
grated catalog facility or VSAM master catalog. For details on how this is done, see
DFSMS/MVS Managing Catalogs.

Figure 111 on page 338 shows how one CVOL can be connected to a second
CVOL. Any subsequent index search for index X on the first control volume is
carried to the second control volume.

 IEHPROGM (Program Maintenance) Program 337

 IEHPROGM

VTOC
To

SYSCTLG
data set

VTOC
To

SYSCTLG
data set

Device type
and serial
number of
connected
CVOL

First OS CVOL Connected OS CVOL

X

Figure 111. Connecting a CVOL to a Second CVOL Using IEHPROGM

The index name of each high level index existing on the second CVOL must be
present in the first CVOL; when a new high level index is placed on a second
CVOL, the first CVOL should be connected to the second CVOL.

Figure 112 shows three CVOLs connected to one CVOL. All volumes are acces-
sible through high level indexes X, Y, and Z.

X Y Z

1st CVOL

CVOL 2 CVOL 3 CVOL 4

Figure 112. Connecting Three CVOLs Using IEHPROGM

338 DFSMS/MVS V1R5 Utilities

 IEHPROGM

Building and Maintaining a Generation Data Group Index in a CVOL
IEHPROGM can be used to build an index structure in a CVOL for a generation
data group and to define what action should be taken when the index overflows.

The lowest level index in the structure can contain up to 255 entries for successive
generations of a data set. If the index overflows, the oldest entry is removed from
the index, unless otherwise specified (in which case, all entries are removed). If
desired, the program can be used to scratch all generation data sets whose entries
are removed from the index.

Figure 113 shows the index structure created for generation data group A.B.C. In
this example, provision is made for up to five subsequent entries in the lowest level
index.

A

B

C - 1 2 3 4

To
SYSCTLG

data set

Figure 113. Building a Generation Data Group Index Using IEHPROGM

Before a generation data group can be cataloged as such on a CVOL, a generation
data group index must exist. Otherwise, a generation data set is cataloged as an
individual data set, rather than as a generation.

When creating and cataloging a generation data set on a CVOL, you must provide
the necessary DCB information. For a discussion of how DCB attributes are pro-
vided for a generation data group, see DFSMS/MVS Using Data Sets.

Maintaining Data Set Passwords
IEHPROGM can be used to maintain non-VSAM password entries in the PASS-
WORD data set and to alter the protection status of DASD data sets in the data set
control block (DSCB). For a complete description of data set passwords and the

| PASSWORD data set, see DFSMS/MVS DFSMSdfp Advanced Services. This book
| also explains why data set passwords provide poor security and why IBM recom-
| mends OS/390 Security Server (RACF).

A data set can have one of three types of password protection, as indicated in the
DSCB for DASD data sets and in the tape label for tape data sets. See
DFSMS/MVS DFSMSdfp Advanced Services for the syntax of the DSCB. For a
description of tape labels, see DFSMS/MVS Using Magnetic Tapes.

 IEHPROGM (Program Maintenance) Program 339

 IEHPROGM

The possible types of data set password protection are:

� No protection, which means that no passwords are required to read or write the
data set.

� Read/write protection, which means that a password is required to read or write
the data set.

� Read-without-password protection, which means that a password is required
only to write the data set; the data set can be read without a password.

If a system data set is password protected and a problem occurs on the data set,
maintenance personnel must be provided with the password in order to access the
data set and resolve the problem.

A data set can have one or more passwords assigned to it; each password has an
entry in the PASSWORD data set. A password assigned to a data set can allow
read and write access, or only read access to the data set.

Figure 114 shows the relationship between the protection status of data set ABC
and the type of access allowed by the passwords assigned to the data set. Pass-
words ABLE and BAKER are assigned to data set ABC. If no password protection
is set in the DSCB or tape label, data set ABC can be read or written without a
password. If read/write protection is set in the DSCB or tape label, data set ABC
can be read with either password ABLE or BAKER and can be written with pass-
word ABLE. If read-without-password protection is set in the DSCB or tape label,
data set ABC can be read without a password and can be written with password
ABLE; password BAKER is never needed.

VTOC To
password
data set

System residence volume

Password BAKER
for data set ABC
allows read access

Password ABLE
for data set ABC
allows read/write

Protection status of data
set ABC contained in
its DSCB or tape label

?No
password
protection

Read/Write
protection

Read without
password
protection

The kind of protection pointed
at allows data set ABC to be:

Read or written on with
no password

Read with
password BAKER

Read or written on with
password ABLE

Written on with
password ABLE

Read with
no password

Figure 114. Relationship between the Protection Status of a Data Set and Its Passwords

Before IEHPROGM is used to maintain data set passwords, the PASSWORD data
set must reside on the system residence volume. IEHPROGM can then be used to:

� Add an entry to the PASSWORD data set.
� Replace an entry in the PASSWORD data set.
� Delete an entry from the PASSWORD data set.
� Provide a list of information from an entry in the PASSWORD data set.

340 DFSMS/MVS V1R5 Utilities

 IEHPROGM

Each entry in the PASSWORD data set contains the name of the protected data
set, the password, the protection mode of the password, an access counter, and 77
bytes of optional user data. The protection mode of the password defines the type
of access allowed by the password and whether the password is a control pass-
word or secondary password. The initial password, added to the PASSWORD data
set for a particular data set, is marked in the entry as the control password for that
data set. The second and subsequent passwords added for the same data set are
marked as secondary passwords.

For DASD data sets, IEHPROGM updates the protection status in the DSCB when
a control password entry is added, replaced, or deleted. This permits setting and
resetting the protection status of an existing DASD data set at the same time its
passwords are added, replaced, or deleted. IEHPROGM automatically alters the
protection status of a data set in the DSCB if the following conditions are met:

� The control password for the data set is being added, replaced, or deleted.

� The data set is online.

� The volume on which the data set resides is specified on the utility control
statement, or the data set is cataloged.

� The data set is not allocated within the IEHPROGM job.

For tape data sets, IEHPROGM cannot update the protection status in the tape
label when a password entry is added, replaced, or deleted. Protection status in a
tape label must be set with JCL.

Passwords to be added, replaced, deleted, or listed can be specified on utility
control statements or can be entered by the console operator. IEHPROGM issues a
message to the console operator when a password on a utility control statement is
either missing or invalid. The message contains the job name, step name, and
utility control statement name and identifies the particular password that is missing
or invalid. Two invalid passwords are allowed per password entry on each utility
control statement before the request is ignored; a total of five invalid passwords is
allowed for the password entries on all the utility control statements in a job step
before the step is canceled.

Adding Data Set Passwords
When a password is added for a data set, an entry is created in the PASSWORD
data set with the specified data set name, password name, protection mode of the
password (read/write or read only), and the optional 77 characters of user-supplied
data. The access counter in the entry is set to zero.

The control password for a data set must always be specified to add, replace, or
delete secondary passwords. The control password should not be specified,
however, to list information from a secondary password entry.

Secondary passwords can be assigned to a data set to restrict some users to
reading the data set or to record the number of times certain users access the data
set. The access counter in each password entry provides a count of the number of
times the password was used to successfully open the data set.

If a control password for an online DASD data set is added, the protection status of
the data set (read/write or read-without-password) is set in the DSCB.

 IEHPROGM (Program Maintenance) Program 341

 IEHPROGM

Replacing Data Set Passwords
Any of the following information may be replaced in a password entry: the pass-
word, protection mode (read/write or read only) of the password, and the 77 char-
acters of user data. The protection status of a data set can be changed by
replacing the control entry for the data set.

If the control entry of an online DASD data set is replaced, the DSCB is also reset
to indicate any change in the protection status of the data set. Therefore, you
should ensure that the volume is online when changing the protection status of a
DASD data set.

Deleting Data Set Passwords
When a control password entry is deleted from the PASSWORD data set, all sec-
ondary password entries for that data set are also deleted. However, when a sec-
ondary entry is deleted, no other password entries are deleted.

If the control password entry is deleted for an online DASD data set, the protection
status of the data set in the DSCB is also changed to indicate no protection. When
deleting a control password for a DASD data set, the user should ensure that the
volume is online. If the volume is not online, the password entry is removed, but
data set protection is still indicated in the DSCB; the data set cannot be accessed
unless another password is added for that data set.

If the control password entry is deleted for a tape data set, the tape volume cannot
be accessed unless another password is added for that data set.

The delete function should be used to delete all the password entries for a
scratched data set to make the space available for new entries.

Listing Password Entries
A list of information from any entry in the PASSWORD data set can be obtained in
the SYSPRINT data set by providing the password for that entry. The list includes:
the number of times the password has been used to successfully open the data
set; the type of password (control password or secondary password) and type of
access allowed by the password (read/write or read-only); and the user data in the
entry. Figure 115 shows a sample list of information printed from a password entry.

 DECIMAL ACCESS COUNT= ðððð25
 PROTECT MODE BYTE= SECONDARY, READ ONLY
 USER DATA FIELD= ASSIGNED TO J. BROWN

Figure 115. Listing of a Password Entry

Input and Output
IEHPROGM uses the following input:

� One or more data sets containing system control data to be modified.

� A control data set that contains utility control statements used to control the
functions of the program.

342 DFSMS/MVS V1R5 Utilities

 IEHPROGM

IEHPROGM produces the following output:

� A modified object data set or volumes.

� A message data set that contains error messages and information from the
PASSWORD data set.

If IEHPROGM is invoked from an application program, you can dynamically allocate
the devices and data sets by issuing SVC 99 before calling IEHPROGM.

See Appendix A for IEHPROGM return codes.

 Control
IEHPROGM is controlled by job and utility control statements.

Job control statements are used to:

� Process or load the program.

� Define the control data set.

� Define volumes or devices to be used during the course of program execution.

� Prevent data sets from being deleted inadvertently.

� Prevent volumes from being demounted before they have been completely
processed by the program.

� Suppress the listing of utility control statements.

Utility control statements are used to control the functions of the program and to
define those data sets or volumes that are to be modified.

Job Control Statements
Figure 116 shows the job control statements for IEHPROGM.

Figure 116. IEHPROGM Job Control Statements

Statement Use

JOB Starts the job.

EXEC Specifies the program name (PGM=IEHPROGM) or, if the job control
statements reside in a procedure library, the procedure name. Additional
PARM information can be specified to control the number of lines per
page on the output listing and to suppress printing of utility control state-
ments. See “EXEC Statement” on page 344.

SYSPRINT DD Defines a sequential data set for messages.

anyname DD Defines a permanently mounted or mountable volume.

SYSIN DD Defines the control data set. The control data set normally follows the
job control statements in the input stream; however, it can be defined as
a member of a procedure library.

 IEHPROGM (Program Maintenance) Program 343

 IEHPROGM

 EXEC Statement
The syntax of the EXEC statement is:

where:

PGM=IEHPROGM
specifies that you want to run IEHPROGM.

PARM=[LINECNT= xx] [, PRINT|NOPRINT]
specifies what should be contained in the SYSPRINT data set, and how the
printed output of SYSPRINT should be formatted. If more than one subparam-
eter is coded with PARM, the subparameters must be enclosed in parentheses
or single quotes.

LINECNT=xx
specifies the number of lines per page to be printed in the listing of the
SYSPRINT data set. The value xx can be from 01 to 99. The default is 45.

PRINT|NOPRINT
specifies whether utility control statements are to be included in the
SYSPRINT listing. Suppressing printing of utility control statements assures
that passwords assigned to data sets remain confidential. However, sup-
pressing printing may make it difficult to interpret error messages, because
the relevant utility control statement is not printed before the message.

The default is to print all control statements.

 //[stepname] EXEC PGM=IEHPROGM
[,PARM=[LINECNT= xx][,PRINT|NOPRINT]]

SYSPRINT DD Statement
The block size for the SYSPRINT data set must be a multiple of 121. Any blocking
factor can be specified.

anyname DD Statement
A DD statement must be included for each permanently mounted or mountable
volume referred to in the job step. These DD statements are used as device allo-
cation statements, rather than as true data definition statements.

This DD statement can be entered:

//anyname DD UNIT=xxxx,VOLUME=SER=xxxxxx,DISP=OLD

The UNIT and VOLUME parameters define the device type and volume serial
number. The DISP=OLD specification prevents the inadvertent deletion of a data
set.

Because IEHPROGM modifies the internal control blocks created by device allo-
cation DD statements, the DSNAME parameter, if supplied, will be ignored by
IEHPROGM. (All data sets are defined explicitly or implicitly by utility control state-
ments.)

Note: Unpredictable results may occur in multitasking environments where
dynamic allocation/deallocation of devices, by other tasks, causes changes
in the TIOT during IEHPROGM execution.

To specify deferred mounting with mountable volumes, code:

344 DFSMS/MVS V1R5 Utilities

 IEHPROGM

 //anyname DD VOLUME=(PRIVATE,SER=xxxxxx),
 // UNIT=(xxxx,,DEFER),DISP=OLD

Unit affinity cannot be used on DD statements defining mountable devices.

SYSIN DD Statement
The block size for the SYSIN data set must be a multiple of 80. Any blocking factor
can be specified.

Utility Control Statements
Figure 117 shows the utility control statements for IEHPROGM.

Continuation requirements for utility control statements are described in “Continuing
Utility Control Statements” on page 8.

Figure 117. IEHPROGM Utility Control Statements

Statement Use

SCRATCH Scratches a data set or a member from a DASD volume.

RENAME Changes the name or alias of a data set or member residing on a DASD
volume.

CATLG Generates an entry in the index of a CVOL (SYSCTLG data set).

UNCATLG Removes an entry from the lowest level index of a CVOL.

BLDX Creates a new index in the CVOL.

DLTX Removes a low level index from a CVOL.

BLDA Assigns an alias to an index at the highest level of a CVOL.

DLTA Deletes an alias previously assigned to an index at the highest level of a
CVOL.

CONNECT Connects two CVOLs together using a high level index name.

RELEASE Removes a high level index name from one CVOL that served as a con-
nector or pointer to a second CVOL.

BLDG Builds an index in a CVOL for a generation data group and defines what
action should be taken when the index overflows.

ADD Adds a password entry in the PASSWORD data set.

REPLACE Replaces information in a password entry.

DELETEP Deletes an entry in the PASSWORD data set.

LIST Formats and lists information from a password entry.

 SCRATCH Statement
The SCRATCH statement is used to scratch a data set or member from a DASD
volume. A data set or member is scratched only from the volumes designated in
the SCRATCH statement. This function does not delete CVOL entries for scratched
data sets.

A SCRATCH operation will not be processed if the data set or volume is being
used by a program executing concurrently. “DISP=OLD” on the DD statement only
prevents the inadvertent deletion of a data set. It does not ensure exclusive use of
the data set during execution of the job step. When scratching a member of a parti-

 IEHPROGM (Program Maintenance) Program 345

 IEHPROGM

tioned data set, it is your responsibility to ensure that the data set is not currently in
use.

For multivolume data sets, all volumes specified must be online.

When scratching a data set managed by the Storage Management Subsystem
(SMS), care must be taken to ensure that the device type and volumes list on the
VOL parameter reflects the volume actually allocated to the data set. When you
specify a volume when allocating an SMS-managed data set, SMS will not auto-
matically allocate the data set on that volume.

When scratching an SMS-managed data set, IEHPROGM will uncatalog that data
set.

The syntax of the SCRATCH statement is shown below.

where:

VTOC
specifies that all data sets on the designated volume be scratched, except for

� a data set that is protected by a password
� a data set whose expiration date has not passed
� a data set that contains the index for an indexed VTOC

Password-protected data sets are scratched if the correct password is provided.

The effect of VTOC is modified when it is used with PURGE or SYS.

DSNAME=name
specifies the fully qualified name of the data set to be scratched or the parti-
tioned data set that contains the member to be scratched. The name must not
exceed 44 characters, including delimiters.

VOL=device=(list)
specifies the device type and serial numbers of the volumes, limited to 50, that
contain the data sets. If only one serial number is listed, it need not be
enclosed in parentheses. Multiple serial numbers should be separated with
commas.

If VTOC or MEMBER is specified, VOL cannot specify more than one volume.
Caution should be used when specifying VTOC if VOL specifies the system
residence volume.

PURGE/NOPURGE
specifies whether data sets designated by DSNAME or VTOC are scratched.

Note: The presence of the PURGE or NOPURGE keyword may be ignored for
SMS managed data sets. When OVRD_EXPDT is specified in the
IGDSMSxx member of SYS1.PARMLIB, the PURGE and NOPURGE
keywords are not honored. The data set is always deleted, whether or
not it has expired. This is true only if the data set is a DASD data set

[label] SCRATCH {VTOC|DSNAME=name}
,VOL=device=(list)
[,PURGE]
[,MEMBER=name]
[,SYS]

346 DFSMS/MVS V1R5 Utilities

 IEHPROGM

and SMS managed. The use of the PURGE and NOPURGE keywords
is unchanged for non-SMS managed data sets.

MEMBER=name
specifies a member name or alias of a member (in the named data set) to be
removed from the directory of a partitioned data set. This name is not validity-
checked because all members must be accessible, whether the name is valid
or not.

Default: The entire data set or volume of data sets specified by name is
scratched.

SYS
limits the action of SCRATCH VTOC so that only system data sets are erased.
System data sets have names beginning with
“AAAAAAAA.AAAAAAAA.AAAAAAAA.AAAAAAAA.” or “SYSnnnnn.T” with “F,”
“V,” or “A” in position 19. These are names assigned to the data sets by the
operating system.

If the name of the data set to be scratched begins with SYS, it is likely to be a
temporary data set which was not erased at normal step or job termination;
nnnnn is the date the data set was created in yyddd format.

SYS does not scratch data sets that are system libraries, such as
SYS1.LINKLIB.

The SYS parameter is valid only when VTOC is specified.

 RENAME Statement
The RENAME statement is used to change the true name or alias of a data set or
member residing on a DASD volume. The name is changed only on the designated
volumes. The rename operation does not update the CVOL.

A RENAME operation will not be processed if the data set or volume is being used
by a program executing concurrently. When renaming a member of a partitioned
data set, it is your responsibility to ensure that the data set is not currently in use.

For multivolume data sets, all volumes specified must be online.

If you do not code the MEMBER parameter, the entire data set is renamed.

When renaming a data set managed by the Storage Management Subsystem
(SMS), care must be taken to ensure that the device type and volumes list on the
VOL parameter reflects the volume actually allocated to the data set. When you
specify a volume when allocating an SMS-managed data set, SMS will not auto-
matically allocate the data set on that volume.

When renaming SMS-managed data sets, IEHPROGM will uncatalog the data set
and recatalog the data set under the new name. If recataloging is necessary, but
cannot be done (because of an alias), IEHPROGM will not rename the data set.

The syntax of the RENAME statement is:

[label] RENAME DSNAME=name
,VOL=device=(list)
,NEWNAME=name
[,MEMBER=name]

 IEHPROGM (Program Maintenance) Program 347

 IEHPROGM

where:

DSNAME=name
specifies the fully qualified name of the data set to be renamed or the parti-
tioned data set that contains the member to be renamed. The name must not
exceed 44 characters, including delimiters.

VOL=device=(list)
specifies the device type and serial numbers of the volumes, limited to 50, that
contain the data sets. If only one serial number is listed, it need not be
enclosed in parentheses. Multiple serial numbers should be separated with
commas.

If MEMBER is specified, VOL cannot specify more than one volume.

NEWNAME=name
specifies the new fully qualified name or alias name for the data set or the new
member.

MEMBER=name
specifies a member name or alias of a member (in the named data set) to be
renamed. This name is not validity-checked because all members must be
accessible, whether the name is valid or not.

Default: The entire data set or volume of data sets specified by name is
changed.

CATLG and UNCATLG Statements
The CATLG statement is used to generate a non-VSAM entry in the index of a
CVOL. If additional levels of indexes are required in the CVOL, this function auto-
matically creates them.

The UNCATLG statement is used to remove a non-VSAM entry from the index of
the CVOL. If the entry removed was the last entry in the index, that index and all
higher, unneeded, indexes, with the exception of the highest level index, are
removed from the CVOL.

To catalog data sets in an integrated catalog facility or VSAM catalog, see
DFSMS/MVS Managing Catalogs and DFSMS/MVS Access Method Services for
ICF.

You cannot use IEHPROGM to catalog or uncatalog data sets (except by renaming
or scratching them) which are SMS-managed. IEHPROGM can only be used to
catalog or uncatalog non-VSAM data sets which are not SMS-managed.

When cataloging generation data sets and the index becomes full, see “BLDG
(Build Generation Data Group Index) Statement” on page 352 for the action to be
taken.

The syntax of the CATLG and UNCATLG statements is:

[label] {CATLG|
UNCATLG}

DSNAME=name
,VOL=device={(list)|(serial,seqno[,...])}
[,CVOL=device=serial]

Note: VOL can only be coded with CATLG

348 DFSMS/MVS V1R5 Utilities

 IEHPROGM

where:

DSNAME=name
specifies the fully qualified name of the data set to be cataloged or uncata-
loged. The name must not exceed 44 characters, including delimiters.

VOL=device={(list)|(serial,seqno[,...])}
specifies the device type, serial numbers, and data set sequence numbers (for
tape volumes) of the volumes (up to 50) that contain the data sets to be cata-
loged in the CVOL.

Always use generic device names (for instance, 3390) for device.

The volume serial numbers must appear in the same order in which they were
originally encountered (in DD statements within the input stream) when the data
set was created. Multiple serial numbers should be separated with commas.

Seqno is valid only for data sets which reside on tape.

VOL can only be coded with CATLG.

CVOL=device=serial
specifies the CVOL on which the search for the index (entry, for UNCATLG) is
to begin. Always use generic device names (for instance, 3390) for device.

If CVOL is omitted, the search begins with the integrated catalog facility or
VSAM master/JOBCAT/STEPCAT catalog. The CVOL must be defined in the
integrated catalog facility or VSAM master catalog as SYSCTLG.Vserial, where
serial must equal the serial number of the CVOL.

BLDX (Build Index) and DLTX (Delete Index) Statement
The BLDX statement is used to create a new index in a CVOL. If the creation of an
index requires that higher level indexes be created, this function automatically
creates them.

The DLTX statement is used to remove an index from a CVOL. Only an index that
has no entries can be removed.

Because this function does not delete higher level indexes, it must be used repet-
itively to delete an entire structure. For example, to delete a generation data group
index structure A.B.C. names, you must code the following sequence of statements:

 DLTX INDEX=A.B.C
 DLTX INDEX=A.B
 DLTX INDEX=A

The syntax of the BLDX and DLTX statements is:

where:

INDEX=name
specifies the qualified name of the index to be created or deleted. The name
must not exceed 44 characters, including delimiters.

[label] {BLDX|
 DLTX}

INDEX=name
[,CVOL=device=serial]

 IEHPROGM (Program Maintenance) Program 349

 IEHPROGM

CVOL=device=serial
specifies the CVOL on which the search for the index is to begin.

If CVOL is omitted, the system tries to locate the proper CVOL by checking the
integrated catalog facility or VSAM master catalog for a CVOL pointer alias
name equal to the high level index specified in the INDEX parameter.

The CVOL must be defined in the integrated catalog facility or VSAM master
catalog as SYSCTLG.Vserial, where serial must equal the serial number of the
CVOL.

BLDA (Build Index Alias) and DLTA (Delete Index Alias)
Statements
The BLDA statement is used to assign an alias to an index at the highest level of a
CVOL.

The DLTA statement is used to delete an alias previously assigned to an index at
the highest level of a CVOL.

The syntax of the BLDA and DLTA statements is:

where:

INDEX=name
specifies the unqualified name of the index to which an alias name is to be
assigned. The unqualified name must not exceed 8 characters.

INDEX can only be coded with BLDA.

ALIAS= name
specifies an unqualified name to be assigned as the alias or to be deleted from
the index. The name must not exceed 8 characters.

CVOL=device=serial
specifies the CVOL on which the entry is to be made or deleted.

If CVOL is omitted, the system tries to locate the proper CVOL by checking the
integrated catalog facility or VSAM master catalog for a CVOL pointer alias
name equal to the high level index specified in the INDEX (ALIAS, for DLTA)
parameter.

The CVOL must be defined in the integrated catalog facility or VSAM master
catalog as SYSCTLG.Vserial, where serial must equal the serial number of the
CVOL.

[label] {BLDA|
 DLTA}

INDEX=name
,ALIAS= name
[,CVOL=device=serial]

Note: INDEX can only be coded with BLDA

CONNECT and RELEASE (Disconnect) Statements
The CONNECT statement is used to place an entry in the high level index of a
CVOL. The entry identifies a second CVOL by its device type and volume serial
number. In addition, it contains an index name identifying the index to be searched
for (during subsequent index searches) on the second CVOL. This function does
not create an index on the second CVOL.

350 DFSMS/MVS V1R5 Utilities

 IEHPROGM

The CONNECT statement does not create a SYSCTLG data set on the connected
control volume. Before cataloging the first data set on a connected control volume,
you must define a SYSCTLG data set on that volume. This can be done with the
following DD statement:

 //ddname DD DSNAME=SYSCTLG,UNIT=xxxx,DISP=(,KEEP),
 // SPACE=(CYL,1),VOLUME=SER=xxxxxx

If a job requires an auxiliary control volume to complete a catalog search, you need
not have the auxiliary control volume mounted before the job is begun. (You do not
have to remember the volume on which a particular data set is cataloged.) The
system directs the operator to mount an auxiliary control volume if it is needed.

Before any CVOL can be accessed by the system, it must be defined in the inte-
grated catalog facility or VSAM master catalog. For details, see DFSMS/MVS Man-
aging Catalogs.

The RELEASE statement is used to remove an entry from the high level index of a
CVOL. This disconnects, in effect, a second CVOL from the first CVOL. The
RELEASE statement does not delete an index from the second CVOL.

The syntax of the CONNECT and RELEASE statements is:

where:

INDEX=name
specifies the unqualified index name to be entered or removed from the high
level index on the first CVOL. The unqualified name must not exceed 8 charac-
ters.

VOL=device=serial
specifies the device type and serial number of the second CVOL. This informa-
tion is placed in the high level index of the first CVOL. Always use generic
device names (for instance, 3390) for device.

VOL can only be coded with CONNECT.

CVOL=device=serial
specifies the device type and volume serial number of the first CVOL. Always
use generic device names (for instance, 3390) for device.

If CVOL is omitted, the system tries to locate the proper (the first, for
CONNECT) CVOL by checking the integrated catalog facility or VSAM master
catalog for a CVOL pointer alias name equal to the high level index specified in
the INDEX parameter.

The CVOL must be defined in the integrated catalog facility or VSAM master
catalog as SYSCTLG.Vserial, where serial must equal the serial number of the
CVOL.

[label] {CONNECT|
 RELEASE}

INDEX=name
,VOL=device=serial
[,CVOL=device=serial]

Note: VOL can only be coded with CONNECT

 IEHPROGM (Program Maintenance) Program 351

 IEHPROGM

BLDG (Build Generation Data Group Index) Statement
The BLDG statement is used to build an index for a generation data group, and to
define what action should be taken when the index overflows.

To delete a generation data group index structure, use the DLTX statement.

The syntax of the BLDG statement is:

where:

INDEX=name
specifies the 1- to 35-character qualified name of the generation data group
index.

ENTRIES=n
specifies the number of entries to be contained in the generation data group
index; n must not exceed 255.

CVOL=device=serial
specifies the CVOL on which the search for the index is to begin.

If CVOL is omitted, the system tries to locate the proper CVOL by checking the
integrated catalog facility or VSAM master catalog for a CVOL pointer alias
name equal to the high level index specified in the INDEX parameter.

The CVOL must be defined in the integrated catalog facility or VSAM master
catalog as SYSCTLG.Vserial, where serial must equal the serial number of the
CVOL.

EMPTY
specifies that all entries be removed from the generation data group index
when it overflows. This deletes all index entries for all of the generation data
sets.

Default: The entries with the largest generation numbers will be maintained in
the catalog when the generation data group index overflows.

DELETE
specifies that generation data sets are scratched after their entries are removed
from the index.

[label] BLDG INDEX=name
,ENTRIES=n
[,CVOL=device=serial]
[,EMPTY]
[,DELETE]

ADD (Add a Password) and REPLACE (Replace a Password)
Statements
The ADD statement is used to add a password entry in the PASSWORD data set.
When the control entry for an online DASD data set is added, the indicated pro-
tection status of the data set is set in the DSCB; when a secondary entry is added,
the protection status in the DSCB is not changed.

The REPLACE statement is used to replace any or all of the following information
in a password entry: the password name, protection mode (read/write or read only)
of the password, and user data. When the control entry for an online DASD data
set is replaced, the protection status of the data set is changed in the DSCB if

352 DFSMS/MVS V1R5 Utilities

 IEHPROGM

necessary; when a secondary entry is replaced, the protection status in the DSCB
is not changed.

The syntax of the ADD and REPLACE statements is:

where:

DSNAME=name
specifies the fully qualified name of the data set whose password entry is to be
added or changed. The name must not exceed 44 characters, including delim-
iters.

PASWORD1=current-password
specifies the password in the entry to be changed. If PASWORD1 is not coded,
the operator is prompted for the current password. PASWORD1 can only be
coded with REPLACE.

PASWORD2=new-password
specifies the new password to be added or assigned to the entry. If the pass-
word is not to be changed, the current password must also be specified as the
new password. The password can consist of 1 to 8 alphanumeric characters. If
PASWORD2 is not coded, the operator is prompted for a new password.

CPASWORD=control-password
specifies the control password for the data set.

For ADD, CPASWORD must be specified unless this is the first password
assigned to the data set, in which case PASWORD2 specifies the password to
be added.

For REPLACE, CPASWORD must be specified unless the control entry is being
changed, in which case PASWORD1 specifies the control password.

TYPE=code
specifies the protection code of the password and, if a control password entry
is to be changed for or assigned to a BDAM online data set, specifies the pro-
tection status of the data set. The values that can be specified for code are:

1 specifies that the password is to allow both read and write access to the
data set; if a control password is being assigned or changed, read/write
protection is set in the DSCB.

2 specifies that the password is to allow only read access to the data set; if
control password is being assigned or changed, read/write protection is set
in the DSCB.

3 specifies that the password is to allow both read and write access to the
data set; if a control password is being assigned or changed, read-without-
password protection is set in the DSCB.

[label] {ADD|
 REPLACE}

DSNAME=name
[,PASWORD1=current-password]
[,PASWORD2=new-password]
[,CPASWORD=control-password]
[,TYPE=code]
[,VOL=device=(list)]
[,DATA= 'user-data']

Note: PASWORD1 can only be coded with REPLACE

 IEHPROGM (Program Maintenance) Program 353

 IEHPROGM

Default: For ADD, if this parameter is omitted, the new password is assigned
the same protection code as the control password for the data set. If a control
password is being “added,” TYPE=3 is the default. For REPLACE, the pro-
tection is not changed.

VOL=device=(list)
specifies the device type and serial numbers of the volumes, limited to 50, that
contain the data sets. If only one serial number is listed, it need not be
enclosed in parentheses. Multiple serial numbers should be separated with
commas.

If omitted, the protection status in the DSCB is not set or changed, unless the
data set is cataloged and online. This parameter is not necessary for secondary
password entries, or if the desired protection status in the DSCB is already set
or is not to be changed.

DATA='user-data'
specifies the user data to be placed in the password entry. The user data has a
maximum length of 77 bytes and must be enclosed in apostrophes. Any other
apostrophes contained within the user data must be entered as two single
apostrophes.

If DATA is omitted from an ADD operation, 77 blanks are used. If DATA is
omitted from a REPLACE operation, current user data is not changed.

DELETEP (Delete a Password) Statement
The DELETEP statement is used to delete an entry in the PASSWORD data set. If
a control entry is deleted, all the secondary entries for that data set are also
deleted. If a secondary entry is deleted, only that entry is deleted. When the
control entry for an online DASD data set is deleted, the protection status in the
DSCB is set to indicate that the data set is no longer protected.

The syntax of the DELETEP statement is:

where:

DSNAME=name
specifies the fully qualified name of the data set whose password entry is to be
deleted. The name must not exceed 44 characters, including delimiters.

PASWORD1=current-password
specifies the password in the entry to be deleted. If PASWORD1 is not coded,
the operator is prompted for the current password.

CPASWORD=control-password
CPASWORD must be specified unless the control entry is being deleted, in
which case PASWORD1 specifies the control password.

VOL=device=(list)
specifies the device type and serial numbers of the volumes, limited to 50, that
contain the data sets. If only one serial number is listed, it need not be

[label] DELETEP DSNAME=name
[,PASWORD1=current-password]
[,CPASWORD=control-password]
[,VOL=device=(list)]

354 DFSMS/MVS V1R5 Utilities

 IEHPROGM

enclosed in parentheses. Multiple serial numbers should be separated with
commas.

If omitted, the protection status in the DSCB is not changed, unless the data
set is cataloged and online. This parameter is not necessary for secondary
password entries, or if the desired protection status in the DSCB is already set.

LIST (List Information from a Password) Statement
The LIST statement is used to format and print information from a password entry.

The syntax of the LIST statement is:

where:

DSNAME=name
specifies the fully qualified name of the data set whose password entry is to be
listed. The name must not exceed 44 characters, including delimiters.

PASWORD1=current-password
specifies the password in the entry to be listed. If PASWORD1 is not coded,
the operator is prompted for the current password.

[label] LIST DSNAME=name
,PASWORD1=current-password

 IEHPROGM Examples
The following examples illustrate some of the uses of IEHPROGM. Figure 118 can
be used as a quick-reference guide to IEHPROGM examples. The numbers in the
“Example” column point to the examples that follow.

Figure 118 (Page 1 of 2). IEHPROGM Example Directory

Operation
Mount
Volumes Comments Example

BLDG Disk A new generation data group index is built and updated through
JCL. A model DSCB is created. New generations are added.

10

BLDG, RENAME,
CATLG

Disk A generation data group index is built; three data sets are renamed
and entered in the index.

9

CATLG, CONNECT Disk One CVOL is connected to another. 8

LIST, REPLACE Disk A password entry is listed. Protection mode and status are changed,
and user data is added.

6

RENAME Disk A member of a partitioned data set is renamed. 7

RENAME,
DELETEP, ADD

Disk A data set is renamed. The old passwords are deleted and new
passwords are assigned.

5

RENAME,
UNCATLG, CATLG

Disk A data set is renamed on two mountable devices; the old data set
name is removed from the CVOL. The data set is cataloged under
its new name.

3

SCRATCH Disk The data sets' DSCB is scratched. 1

SCRATCH,
UNCATLG

Disk Two data sets are scratched and their entries removed from the OS
CVOL.

2

 IEHPROGM (Program Maintenance) Program 355

 IEHPROGM

Figure 118 (Page 2 of 2). IEHPROGM Example Directory

Operation
Mount
Volumes Comments Example

UNCATLG Disk Index structures for three generation data sets are deleted from the
CVOL.

4

| Examples that use disk or tape in place of actual device names or numbers must
| be changed before use. The actual device names or numbers depend on how your
| installation has defined the devices to your system.

Example 1: Scratch Temporary System Data Sets
In this example, all temporary system data sets are scratched from the volume
table of contents.

 //SCRVTOC JOB ...
 //STEP1 EXEC PGM=IEHPROGM
 //SYSPRINT DD SYSOUT=A
 //DD2 DD UNIT=disk,VOLUME=SER=222222,DISP=OLD
 //SYSIN DD \
 SCRATCH VTOC,VOL=disk=222222,SYS
 /\

The control statements are discussed below:

� The DD2 statement defines a volume. Because the system residence volume is
not referred to, a DD statement is needed to define it.

� The SCRATCH statement, with SYS specified, indicates that all temporary
system data sets whose expiration dates have expired are scratched from the
specified volume.

Example 2: Scratch and Uncatalog Two Data Sets
In this example, two data sets are scratched: SET1 and A.B.C.D.E are scratched
from volume 222222. Both data sets are uncataloged.

 //SCRDSETS JOB ...
 //STEP1 EXEC PGM=IEHPROGM
 //SYSPRINT DD SYSOUT=A
 //DD1 DD UNIT=disk,VOLUME=SER=111111,DISP=OLD
 //DD2 DD UNIT=disk,DISP=OLD,VOLUME=SER=222222
 //SYSIN DD \
 SCRATCH DSNAME=SET1,VOL=disk=222222
 UNCATLG DSNAME=SET1
 SCRATCH DSNAME=A.B.C.D.E,VOL=disk=222222
 UNCATLG DSNAME=A.B.C.D.E
 /\

The utility control statements are discussed below:

� The first SCRATCH statement specifies that SET1, which resides on volume
222222, is scratched.

� The first UNCATLG statement specifies that SET1 is uncataloged.

� The second SCRATCH statement specifies that A.B.C.D.E, which resides on
volume 222222, is scratched.

356 DFSMS/MVS V1R5 Utilities

 IEHPROGM

� The second UNCATLG statement specifies that A.B.C.D.E is uncataloged.

Example 3: Rename a Multi-Volume Data Set Cataloged in a CVOL
In this example, the name of a data set is changed on two mountable volumes. The
old data set name is removed from the CVOL and the data set is cataloged under
its new data set name.

 //RENAMEDS JOB ...
 //STEP1 EXEC PGM=IEHPROGM
 //SYSPRINT DD SYSOUT=A
 //DD1 DD VOLUME=SER=111111,UNIT=disk,DISP=OLD
 //DD2 DD UNIT=(disk,,DEFER),DISP=OLD,
 // VOLUME=(PRIVATE,SER=(222222,333333))
 //SYSIN DD \
 RENAME DSNAME=A.B.C,NEWNAME=NEWSET,VOL=disk=(222222,333333)
 UNCATLG DSNAME=A.B.C
 CATLG DSNAME=NEWSET,VOL=disk=(222222,333333)
 /\

The control statements are discussed below:

� RENAME specifies that data set A.B.C, which resides on volumes 222222 and
333333, is to be renamed NEWSET.

� UNCATLG specifies that data set A.B.C is uncataloged.

� CATLG specifies that NEWSET, which resides on volumes 222222 and
333333, is cataloged in the CVOL.

Example 4: Uncatalog Three Data Sets
In this example, three data sets—A.B.C.D.E.F.SET1, A.B.C.G.H.SET2, and
A.B.I.J.K.SET3—are uncataloged.

 //DLTSTRUC JOB ...
 //STEP1 EXEC PGM=IEHPROGM
 //SYSPRINT DD SYSOUT=A
 //DD1 DD UNIT=disk,VOLUME=SER=111111,DISP=OLD
 //SYSIN DD \
 UNCATLG DSNAME=A.B.C.D.E.F.SET1
 UNCATLG DSNAME=A.B.C.G.H.SET2
 UNCATLG DSNAME=A.B.I.J.K.SET3
 /\

The control statements are discussed below:

� The UNCATLG statements specify that data sets A.B.C.D.E.F.SET1,
A.B.C.G.H.SET2, and A.B.I.J.K.SET3 are uncataloged.

Example 5: Rename a Data Set and Define New Passwords
In this example, a data set is renamed. The data set passwords assigned to the old
data set name are deleted. Then two passwords are assigned to the new data set
name. If the data set is not cataloged, a message is issued indicating that the
LOCATE macro instruction ended unsuccessfully.

 IEHPROGM (Program Maintenance) Program 357

 IEHPROGM

 72
 //ADDPASS JOB ...
 //STEP1 EXEC PGM=IEHPROGM,PARM='NOPRINT'
 //SYSPRINT DD SYSOUT=A
 //DD1 DD VOLUME=SER=222222,DISP=OLD,
 // UNIT=disk
 //SYSIN DD \
 RENAME DSNAME=OLD,VOL=disk=222222,NEWNAME=NEW
 DELETEP DSNAME=OLD,PASWORD1=KEY
 ADD DSNAME=NEW,PASWORD2=KEY,TYPE=1, X

DATA='SECONDARY IS READ'
 ADD DSNAME=NEW,PASWORD2=READ,CPASWORD=KEY,TYPE=2, X

DATA='ASSIGNED TO J. DOE'
 /\

The utility control statements are discussed below:

� RENAME specifies that the data set called OLD is renamed NEW. The operator
is required to supply a password to rename the old data set.

� DELETEP specifies that the entry for the password KEY is deleted. Because
KEY is a control password in this example, all the password entries for the data
set name are deleted. The VOL parameter is not needed because the pro-
tection status of the data set as set in the DSCB is not to be changed;
read/write protection is presently set in the DSCB, and read/write protection is
desired when the passwords are reassigned under the new data set name.

� The ADD statements specify that entries are added for passwords KEY and
READ. KEY becomes the control password and allows both read and write
access to the data set. READ becomes a secondary password and allows only
read access to the data set. The VOL parameter is not needed, because the
protection status of the data set is still set in the DSCB.

Example 6: List and Replace Password Information
In this example, information from a password entry is listed. Then the protection
mode of the password, the protection status of the data set, and the user data are
changed.

 72
 //REPLPASS JOB ...
 //STEP1 EXEC PGM=IEHPROGM,PARM='NOPRINT'
 //SYSPRINT DD SYSOUT=A
 //DD1 DD UNIT=disk,VOLUME=SER=111111,DISP=OLD
 //DD2 DD VOLUME=(PRIVATE,SER=(222222,333333)),
 // UNIT=(disk,,DEFER),DISP=OLD
 //SYSIN DD \
 LIST DSNAME=A.B.C,PASWORD1=ABLE
 REPLACE DSNAME=A.B.C,PASWORD1=ABLE,PASWORD2=ABLE,TYPE=3, X
 VOL=disk=(222222,333333), X

DATA='NO SECONDARIES; ASSIGNED TO DEPT 31'
 /\

The utility control statements are discussed below:

� LIST specifies that the access counter, protection mode, and user data from
the entry for password ABLE are listed. Listing the entry permits the content of
the access counter to be recorded before the counter is reset to zero by the
REPLACE statement.

358 DFSMS/MVS V1R5 Utilities

 IEHPROGM

� REPLACE specifies that the protection mode of password ABLE is to be
changed to allow both read and write access and that the protection status of
the data set is changed to write-only protection. The VOL parameter is required
because the protection status of the data set is changed and the data set, in
this example, is not cataloged. Because this is a control password, the
CPASWORD parameter is not required.

Example 7: Rename a Partitioned Data Set Member
In this example, a member of a partitioned data set is renamed.

 //REN JOB ...
 //STEP1 EXEC PGM=IEHPROGM
 //SYSPRINT DD SYSOUT=A
 //DD1 DD VOL=SER=222222,DISP=OLD,UNIT=disk
 //SYSIN DD \
 RENAME VOL=disk=222222,DSNAME=DATASET,NEWNAME=BC,MEMBER=ABC
 /\

The control statements are discussed below:

� DD1 DD defines a permanently mounted volume.

� SYSIN DD defines the input data set, which follows in the input stream.

� RENAME specifies that member ABC in the partitioned data set DATASET,
which resides on a disk volume, is renamed BC.

Example 8: Define New CVOL and Connect It to Existing CVOL
In this example, a new CVOL (SYSCTLG data set) is defined and connected to an
existing CVOL. A data set is then cataloged in the new CVOL.

 //LNKX JOB ...
 //STEP1 EXEC PGM=IEHPROGM
 //SYSPRINT DD SYSOUT=A
 //NEWCVOL DD DSN=SYSCTLG,UNIT=disk,VOL=SER=222222,
 // DISP=(,KEEP),SPACE=(TRK,(1ð,1))
 //DD1 DD UNIT=disk,VOL=SER=111111,DISP=SHR,SPACE=(TRK,ð)
 //SYSIN DD \
 CATLG DSNAME=SYSCTLG.V222222,VOL=disk=222222
 CONNECT INDEX=AA,VOL=disk=222222
 CATLG DSNAME=AA.BB,VOL=disk=222222
 /\

This example assumes that the CVOL on volume 111111 was previously defined in
the integrated catalog facility or VSAM master catalog with a CVOL pointer, and
“AA” was defined in the integrated catalog facility or VSAM master catalog as an
alias of the CVOL pointer. For details on how this is done, see DFSMS/MVS Man-
aging Catalogs.

The utility control statements are discussed below:

� NEWCVOL DD allocates space for the new CVOL.

� The first CATLG statement establishes a CVOL pointer in the integrated
catalog facility or VSAM master catalog for the new CVOL.

� The CONNECT statement causes the new CVOL (on volume 222222) to be
connected to the old CVOL (on volume 111111), such that any catalog man-

 IEHPROGM (Program Maintenance) Program 359

 IEHPROGM

agement requests coming to the old CVOL having a high level index name of
AA will be routed to the new CVOL.

� The second CATLG statement will cause the data set AA.BB to be cataloged in
the new CVOL on volume 222222. Since this is the first request to update the
new CVOL, this will cause the new CVOL to be formatted before the catalog
entry is made.

Example 9: Build a Generation Data Group Index in a CVOL
In this example, a generation data group index for generation data group A.B.C is
built in a CVOL. Three existing noncataloged, nongeneration data sets are
renamed; the renamed data sets are entered as generations in the generation data
group index.

 72
 //BLDINDEX JOB ...
 //STEP1 EXEC PGM=IEHPROGM
 //SYSPRINT DD SYSOUT=A
 //DD1 DD UNIT=disk,VOLUME=SER=111111,DISP=OLD
 //DD2 DD UNIT=disk,DISP=OLD,
 // VOLUME=SER=222222
 //SYSIN DD \
 BLDG INDEX=A.B.C,ENTRIES=1ð,CVOL=disk=111111
 RENAME DSNAME=DATASET1,VOL=disk=222222, X
 NEWNAME=A.B.C.Gððð1Vðð
 RENAME DSNAME=DATASET2,VOL=disk=222222, X
 NEWNAME=A.B.C.Gððð2Vðð
 RENAME DSNAME=DATASET3,VOL=disk=222222, X
 NEWNAME=A.B.C.Gððð3Vðð
 CATLG DSNAME=A.B.C.Gððð1Vðð,VOL=disk=222222, X
 CVOL=disk=111111
 CATLG DSNAME=A.B.C.Gððð2Vðð,VOL=disk=222222, X
 CVOL=disk=111111
 CATLG DSNAME=A.B.C.Gððð3Vðð,VOL=disk=222222, X
 CVOL=disk=111111
 /\

The control statements are discussed below:

� DD1 DD defines the volume on which the SYSCTLG data set resides.

� BLDG specifies the generation group name A.B.C and makes provision for ten
entries in the index. The oldest generation is uncataloged when the index
becomes full. No generations are scratched.

� The RENAME statements rename three nongeneration data sets residing on a
disk volume.

� The CATLG statements enter the renamed data sets in the generation data
group index and catalog them in the CVOL.

Because the DCB parameters were supplied when the nongeneration data sets
were created, no DCB parameters are now specified; therefore, no model DSCB is
required. See Example 10 for information on how to create a model DSCB.

360 DFSMS/MVS V1R5 Utilities

 IEHPROGM

Example 10: Create Model DSCB and Build Generation Data Group
Index

In this example, an IEHPROGM job step, STEPA, creates a model DSCB and
builds a generation data group index. STEP B, an IEBGENER job step, creates and
catalogs a sequential generation data set from data in the input stream. STEP C,
an IEBGENER job step, creates and catalogs a second generation with new DCB
attributes.

This example assumes that the CVOL with serial number 111111 was previously
defined in the integrated catalog facility or VSAM master catalog with a CVOL
pointer, and “A” was defined in the integrated catalog facility or VSAM master
catalog as an alias of the CVOL pointer. For details on how this is done, see
DFSMS/MVS Managing Catalogs.

 //BLDINDX JOB ...
 //STEP1 EXEC PGM=IEHPROGM
 //SYSPRINT DD SYSOUT=A
 //BLDDSCB DD DSNAME=A.B.C,DISP=(,KEEP),SPACE=(TRK,(ð)),
 // DCB=(LRECL=8ð,RECFM=FB,BLKSIZE=8ðð),
 // VOLUME=SER=111111,UNIT=disk
 //SYSIN DD \
 BLDG INDEX=A.B.C,ENTRIES=1ð,EMPTY,DELETE
 /\
 //STEPB EXEC PGM=IEBGENER
 //SYSPRINT DD SYSOUT=A
 //SYSIN DD DUMMY
 //SYSUT2 DD DSNAME=A.B.C(+1),UNIT=disk,DISP=(,CATLG),
 // VOLUME=SER=222222,SPACE=(TRK,2ð)
 //SYSUT1 DD DATA

 (input data)

 /\
 //STEPC EXEC PGM=IEBGENER
 //SYSPRINT DD SYSOUT=A
 //SYSIN DD DUMMY
 //SYSUT2 DD DSNAME=A.B.C(+2),UNIT=disk,DISP=(,CATLG),
 // DCB=(LRECL=8ð,RECFM=FB,BLKSIZE=16ðð),
 // VOLUME=SER=222222,SPACE=(TRK,2ð)
 //SYSUT1 DD DATA

 (input data)

 /\

The control statements are discussed below:

 STEPA:

� BLDDSCB DD creates a model DSCB on the CVOL volume.

� SYSIN DD indicates that the control data set follows in the input stream.

� BLDG specifies the generation data group name A.B.C and makes pro-
vision for ten entries in the group. When the index is filled, it is emptied,
and all of the generations are deleted.

 STEPB:

 IEHPROGM (Program Maintenance) Program 361

 IEHPROGM

� SYSUT2 DD defines an output sequential generation data set. The gener-
ation data set is assigned the absolute generation and version number
G0001V00 in the index.

� SYSUT1 DD defines the input data set, which follows in the input stream.

 STEPC:

� SYSUT2 DD defines a second output sequential generation data set. The
generation data set is assigned the absolute generation and version
number G0002V00 in the index. The specified DCB attributes override
those initially specified in the model DSCB. The DCB attributes specified
when the model DSCB was created remain unchanged; that is, those attri-
butes are applicable when you catalog a succeeding generation unless you
specify overriding attributes at that time.

� SYSUT1 defines the input data set, which follows in the job stream.

Any subsequent job that causes the deletion of the generations should include DD
statements defining the devices on which the volumes containing those generations
are to be mounted. The CVOL entry is deleted for each generation for which no DD
statement is included at that time, but the generation itself is not deleted.

After the generation data group is emptied, the new generations continue to be
assigned generation numbers according to the last generation number assigned
before the empty operation. To reset the numbering operation (that is, to reset to
G0000V00 or G0001V00), it is necessary to delete the catalog entries for all the old
generation data sets and then rename and recatalog, beginning with G0000V00.

362 DFSMS/MVS V1R5 Utilities

 IFHSTATR

IFHSTATR (List ESV Data) Program

IFHSTATR is a system utility that formats and prints information from Type 21 SMF
(system management facilities) records. These records provide error statistics by
volume (ESV) data.

Figure 119 below and Figure 120 on page 364 show the formats of the type 21
records.

TOTAL RECORD LENGTH (48) DESCRIPTOR

TIME OF DAY

CURRENT DATE

SYSTEM IDENTIFICATION

SYSTEM IDENTIFICATION

VOLUME SERIAL NUMBER

UCB TYPE

START I/Os

NOISE BLOCKS ERASE GAPS

VOLUME SERIAL NO. (CONT) CHANNEL UNIT ADDRESS

CLEANER ACTIONS TAPE FORMAT

BLOCK SIZE RESERVED

LENGTH OF REST OF RECORD
INCLUDING THIS FIELD (30)

ERASE GAPS
(CONTINUED)

CURRENT DATE (CONTINUED)

TIME OF DAY (CONTINUED)

0 (X’00’)
0 2 3 41

4 (X’04’)

8 (X’08’)

12 (X’0C’)

16 (X’10’)

20 (X’14’)

24 (X’18’)

28 (X’1C’)

32 (X’20’)

36 (X’24’)

40 (X’28’)

44 (X’2C’)

48 (X’30’)

SYSTEM
INDICATOR

TEMPORARY READ
ERRORS

PERMANENT READ
ERRORS

PERMANENT WRITE
ERRORS

TEMPORARY WRITE
ERRORS

RECORD
TYPE (21)

Offset and Length (in bytes):

Figure 119. SMF Type 21 (ESV) Record Format (48 bytes)

 Copyright IBM Corp. 1979, 1999 363

 IFHSTATR

TOTAL RECORD LENGTH (62) DESCRIPTOR

TIME OF DAY

CURRENT DATE

SYSTEM IDENTIFICATION

SYSTEM IDENTIFICATION

VOLUME SERIAL NUMBER

UCB TYPE

START I/Os

NOISE BLOCKS ERASE GAPS

VOLUME SERIAL NO. (CONT) CHANNEL UNIT ADDRESS

CLEANER ACTIONS TAPE FORMAT

BLOCK SIZE

BYTES WRITTEN

TAPE UNIT SERIAL (CONTINUED)

NUMBER OF 4K BYTES READ NUMBER OF 4K

TEMPORARY READ FORWARD ERRORS

TEMPORARY READ BACKWARD ERRORS TEMPORARY WRITE ERRORS

DCBOFLAG T/U SERIAL

LENGTH OF REST OF RECORD
INCLUDING THIS FIELD (44)

ERASE GAPS
(CONTINUED)

CURRENT DATE (CONTINUED)

TIME OF DAY (CONTINUED)

0 (X’00’)
0 2 3 41

4 (X’04’)

8 (X’08’)

12 (X’0C’)

16 (X’10’)

20 (X’14’)

24 (X’18’)

28 (X’1C’)

32 (X’20’)

36 (X’24’)

40 (X’28’)

44 (X’2C’)

48 (X’30’)

52 (X’34’)

56 (X’38’)

60 (X’3C’)

62 (X’3E’)

SYSTEM
INDICATOR

TEMPORARY READ
ERRORS

PERMANENT READ
ERRORS

PERMANENT WRITE
ERRORS

TEMPORARY WRITE
ERRORS

RECORD
TYPE (21)

Offset and Length (in bytes):

Figure 120. SMF Type 21 (ESV) Record Format (62 Bytes)

Assessing the Quality of Tapes in a Library
The statistics gathered by SMF in ESV records can be very useful for assessing
the quality of a tape library. IFHSTATR prints ESV records in date/time sequence.
You may find it useful to sort ESV records into volume serial number sequence,
device address sequence, or into error occurrence sequence to help analyze the
condition of the library.

The IFHSTATR report helps to identify deteriorating media (tapes); occasionally,
poor performance from a particular tape drive can also be identified. The TAPE
UNIT SERIAL may be used to identify the tape drive that wrote the tape.

An ESV record is written to the SMF data set via SVC 91:

1. When a volume is demounted
2. When a volume is demounted via DDR
3. When a tape drive is VARIED off-line

364 DFSMS/MVS V1R5 Utilities

 IFHSTATR

4. When an EOD command is issued
5. When EREP is run

Because an ESV record may be written at other than demount time, more than one
record may be written during the time a volume is mounted. Therefore, the number
of records for a volume should not be used to determine the number of mounts or
uses of a volume.

Input and Output
IFHSTATR uses, as input, ESV records that contain error and usage information
about magnetic tape volumes. If no ESV records are found, a message is written to
the output data set. If the ESV record is not 48 or 62 bytes long, an INVALID TYPE
21 RECORD message is printed.

Run IFASMFDP to convert SYS1.MANX or SYS1.MANY from VSAM to physical
sequential prior to using IFHSTATR to retrieve data from the ESV records. For
information on how to run IFASMFDP, see OS/390 MVS System Management
Facilities (SMF).

IFHSTATR produces an output data set which contains information selected from
ESV records. The output takes the form of 121-byte unblocked records, with an
American National Standards Institute (ANSI) control character in the first byte of
each record.

Figure 121 shows a sample of printed output from IFHSTATR. The fields in the
printed output are explained in the legend that follows.

MAGNETIC TAPE ERROR STATISTICS BY VOLUME 85/123
VOLUME TIME DEV T/U BLOCK TAPE TEMP TEMP TEMP PRM PRM NOISE ERASE CLEAN USAGE MBYTES MBYTES
SERIAL DATE OF DAY ADR SER MODE SIZE FORM READ REACH WHITE RD WAT BLOCK GAPS ACTS S1ð READ WRITTEN
______ ____ ______ ___ ___ ____ _____ ____ ____ _____ _____ ___ ___ _____ _____ _____ _____ ______ _______

INVALID TYPE 21 RECORD
T342ðð 85111 ð8:ð4:22 18ð ððððð OUT N/A N/A 1 N/A 2 3 4 5 6 7 8 N/A N/A
T342ðð 85111 12:ð1:59 281 56789 OUT 8ð 16ðð 1 N/A 2 3 4 5 6 7 8 N/A N/A
T342ðð 85111 12:ð2:18 28C 6789ð RB 32768 625ð 255 N/A 255 255 255 255 65535 65535 65535 N/A N/A
T342ðð 85111 12:ð3:21 48ð 789ð1 RB 8ð N/A 1 2 3 4 5 N/A 6 7 8 9 1ð
T342ðð 85111 12:ð4:21 48ð 89ð12 RF 65535 N/A 65535 65535 65535 255 255 N/A 65535 65535 65535 65535 65535

\\
\ \
\ T342ððð IS A 342ð WITH SMALL NUMBER OF ERRORS WITH BLOCKSIZE/DENSITY NOT AVAILABLE \
\ T342ðð1 IS A 342ð WITH SMALL NUMBER OF ERRORS \
\ T342ðð2 IS A 342ð WITH MAXIMUM NUMBER OF ERRORS \
\ T348ððð IS A 348ð WITH SMALL NUMBER OF ERRORS \
\ T348ðð1 IS A 348ð WITH MAXIMUM NUMBER OF ERRORS \
\ \
\\

Figure 121. Sample Output from IFHSTATR

Legend

TIME OF DAY The time the ESV record was written.

DEV ADR The device address of the tape drive on which the tape was mounted

T/U SER Serial number of the tape drive that wrote the tape, which is obtained from the
tape label for input tapes if available.

MODEñ The OPEN flag bits for the data set being accessed.

� OUT = OPENED for OUTPUT
� RF = OPENED for INPUT forward
� RB = OPENED for INPUT read backward

 IFHSTATR (List ESV Data) Program 365

 IFHSTATR

Legend

BLOCKSIZEñ The block size in the last data set accessed.

TAPE FORMATñ The recording format of the tape.

TEMP READ Number of read data checks that were successfully retried.

TEMP READBò Number of read data checks on read backward commands that were success-
fully retried.

TEMP WRITE Number of write data checks that were successfully retried.

PERM RD Number of read data checks that were not successfully retried.

PERM WRT Number of write data checks that were not successfully retried.

NOISE BLOCK (NRZI only) Number of read data checks that had the number of bytes read less
than 12.

ERASE GAPS Number of times an erase gap command was issued during error recovery. An
erase gap command is issued before a retry of a write data check.

CLEAN ACTS Number of times that, during read data check recovery, the tape was moved
over the cleaner blade. This will normally be done after every fourth retry of the
original read command.

USAGE SIO Number of channel programs completed (channel programs started by ERP are
not counted). Because a channel program has any number of CCWs, this may
not be the count of the reads or writes.

MBYTES READò Megabytes read.

MBYTES WRITTENò Megabytes written.

Note:

ñ Data originates in the DCB and may not be available.
ò Buffered tape units only

 Control
IFHSTATR is controlled by job control statements. Utility control statements are not
used.

Figure 122 shows the job control statements for IFHSTATR.

Figure 122. IFHSTATR Job Control Statements

Statement Use

JOB Starts the job.

EXEC Specifies the program name (PGM=IFHSTATR).

SYSUT1 DD Defines the input data set and the device on which it resides. The
DSNAME, UNIT, VOLUME, and DISP parameters should be included.

| You might need LABEL and DCB parameters if the device is a tape
| device without IBM standard labels.

SYSUT2 DD Defines the sequential data set on which the output is written.

366 DFSMS/MVS V1R5 Utilities

 IFHSTATR

 IFHSTATR Example
In this example, IFHSTATR is used to print out Type 21 SMF records.

 //REPORT JOB ...
 //STEP1 EXEC PGM=IFHSTATR
 //SYSUT1 DD UNIT=348ð,DSNAME=SYS1.MAN,LABEL=(,SL),
 // VOL=SER=volid,DISP=OLD
 //SYSUT2 DD SYSOUT=A
 /\

The output data set can reside on any output device supported by BSAM.

Note: The input LRECL and BLKSIZE parameters are not specified by IFHSTATR.
This information is taken from the DCB parameter on the SYSUT1 DD
statement or from the tape label.

 IFHSTATR (List ESV Data) Program 367

 IFHSTATR

368 DFSMS/MVS V1R5 Utilities

Appendix A. Invoking Utility Programs from an Application
Program

General-use programming interface

This appendix documents General-use Programming Interface and Associated
Guidance Information provided by DFSMS/MVS.

This appendix is intended to help you to invoke a utility program from an application
program.

You can start a utility program through an application program using the LINK
macro instructions. (ATTACH may also be used, but additional parameters are
needed. See OS/390 MVS Assembler Services Reference for more information.)

You must supply the information usually specified in the PARM parameter of the
EXEC statement, and any nonstandard ddnames that define data sets you want the
utility to use.

Note: All parameters must reside below the line (that is, have 24 bit addresses).

For further information about LINK parameters, see OS/390 MVS Assembler Ser-
vices Reference.

When invoking IEBCOMPR, IEBCOPY, IEBDG, IEBGENER, IEBPTPCH, IEHLIST,
IEHMOVE, or IEHPROGM from an application program, you must dynamically allo-
cate the device by issuing SVC 99 before calling the utility or you must use the JCL
equivalent.

You may run authorized functions with IEBCOPY, IEHINITT, IEHMOVE, and
IEHPROGM. When executing an authorized function, the calling program must be
authorized via the authorized program facility (APF). If you are using TSO, the TSO
service routine IKJEFTSR may be used by an unauthorized program to invoke an
authorized program such as IEBCOPY. For details on program authorization, see
OS/390 MVS Authorized Assembler Services Guide. For information about TSO,
see OS/390 TSO/E Programming Services.

The syntax of the LINK macro instruction is:

where:

| EP=progname
| specifies the name of the utility program.

| PARAM=(optionaddr[,ddnameaddr[,hdingaddr]])
| specifies, as a sublist, address parameters to be passed from the application
| program to the utility program. All parameters and the parameter list itself must
| be in 24 bit addressable storage. For details on how to build these parameter
| lists, see “Building Parameter Lists” on page 370. These values can be coded:

| [label]| LINK| EP=progname
| ,PARAM=(optionaddr[,ddnameaddr
| [,hdingaddr]])
| ,VL=1

 Copyright IBM Corp. 1979, 1999 369

| optionaddr
| specifies the address of an option list which contains options usually speci-
| fied in the PARM parameter of the EXEC statement. This must be present
| for all utility programs.

| ddnameaddr
| specifies the address of a list of alternate ddnames for the data sets used
| during utility program processing. If standard ddnames are used and this is
| not the last parameter in the list, it should point to a halfword of zeros. If it
| is the last parameter, it may be omitted.

| hdingaddr
| specifies the address of a list which contains an EBCDIC beginning page
| number for the SYSPRINT data set. If hdingaddr is omitted, the page
| number defaults to 1. Hdingaddr may be omitted if it is the last parameter.

| VL=1
| specifies that the sign bit of the last fullword of the address parameter list is to
| be set to 1.

Building Parameter Lists

 Options List
The options list is the parameter list that contains the options that are usually speci-
fied in the PARM parameter of the EXEC statement. This list is always required,
even if you are not passing any PARM options to a utility program.

The general syntax of the PARM options parameter list (OPTLIST) is:

The options list should begin on a halfword boundary. The two high-order bytes of
this list must contain a hexadecimal count of the number of bytes in the remainder
of the options list. The options list is free-form, with fields separated by commas.
No blanks or hexadecimal zeros should appear in the list outside of the first two
bytes (the length indicator).

For example, you can start IEBCOPY and pass it some PARM parameters by
coding the following (in assembler):

 LINK EP=IEBCOPY,PARAM=(OPTLIST),VL=1
 .
 .
 .
OPTLIST DS ðH
 DC AL2(L'OPTPARM)
OPTPARM DC C'SIZE=1ðððK,WORK=1M'

370 DFSMS/MVS V1R5 Utilities

Note that in the above example, you do not code the parentheses or single quota-
tion marks that you would normally code in the PARM parameter. The PARM
parameters for the IEBCOPY example above would normally be coded
PARM=(SIZE=1000K,WORK=1M) or PARM='SIZE=1000K,WORK=1M', but you
should not pass the enclosing parentheses or single quotations to IEBCOPY when
you start the program from an application program.

When you are not passing any PARM parameter values to a utility program, code a
halfword of hexadecimal zeros for the options list. For instance, to start the
IEBGENER program from an application program using no PARM values and the
default ddnames, code (in assembler):

 LINK EP=IEBGENER,PARAM=(OPTLIST),VL=1
 .
 .
 .
OPTLIST DC H'ð'

 ddname List
The ddname list is a parameter list containing the ddnames of the data sets or
volumes that you want the utility program to use. If you are using the standard
ddnames for your data sets, you do not need to code a ddname list, unless you
code a page header parameter list.

The ddname list should begin on a halfword boundary. The two high-order bytes
must contain a count of the number of bytes in the remainder of the list. Each
ddname must take up 8 bytes. If a ddname is shorter than 8 bytes, it must be left
aligned and padded with blanks. If you code hexadecimal zeros for a ddname, or if
you omit a ddname by shortening the ddname list, the standard ddname is
assumed. You cannot omit a ddname from the middle of the ddname list without
replacing it with hexadecimal zeros.

The general structure of the ddname parameter list (DDNMELST) is:

 Appendix A. Invoking Utility Programs from an Application Program 371

X ’ 00000000 00000000 ’

X ’ 00000000 00000000 ’

X ’ 00000000 00000000 ’

X ’ 00000000 00000000 ’

X ’ 00000000 00000000 ’

SYSIN

SYSUT1

SYSUT2

SYSUT3

SYSUT4

SYSPRINT

Length of DDNMPARM

DDNMPARM

DDNMELST

26Length:
(in bytes)

For example, to start IEBCOPY using nonstandard ddnames, you could code:

 LINK EP=IEBCOPY,PARAM=(OPTLIST,DDNMELST),VL=1
 .
 .
 .
OPTLIST DC H'ð'
DDNMELST DC AL2(L'DDNMEND)
DDNMPARM DC 7XL8'ð'
 DC CL8'INPDS '

DC CL8'OUTPDS '
DDNMEND EQU DDNMPARM,\-DDNMPARM

In this example, IEBCOPY is told to use INPDS as the input data set and OUTPDS
as the output data set.

To start utilities such as IEBCOPY with multiple input or output data sets, it is nec-
essary to pass a ddname list to the utility with alternative ddnames for SYSUT1 and
SYSUT2. The utility control statements will be sufficient to identify the other
ddnames that you require.

You do not need to code a ddname parameter list when you are invoking the IEH
system utilities. The ddnames for these utilities define devices rather than data
sets, and the utility control statements used by these utilities are sufficient for identi-
fying the appropriate devices. The IEH utilities only use the entries for SYSIN and
SYSPRINT from the ddname list.

372 DFSMS/MVS V1R5 Utilities

Page Header Parameter
You can specify the beginning page number of your printed output by passing to a
utility a page header parameter. The first two bytes of this parameter must contain
the length of the remainder of the parameter. The page number cannot be longer
than 4 bytes and must be in EBCDIC format.

Some utilities update the page number that are passed to them. They replace it
with a value that is one greater than the last page number used. This allows for
consecutive invocations.

The general syntax of the page header parameter (HDNGLST) is:

For example, to load IEHLIST and get a printout whose first page begins with a
page number of 10, you could code:

 LINK EP=IEHLIST,PARAM=(OPTLIST,DDNMELST,HDNGLST),VL=1
 .
 .
 .
OPTLIST DC H'ð'
DDNMELST DC H'ð'
HDNGLST DC AL2(L'PAGENUM)
PAGENUM DC C'1ð'

Some utilities use fewer than 4 bytes per page number. Storing a page number that
is too large in the page header parameter could cause unpredictable results. For
example, if you link to IEBIMAGE with a page number of 998, the following page
numbers result:

 998
 999
 (blank)
 1
 2
 (and so on)

In this case, you cannot specify a page number larger than 999.

 Return Codes

IEBCOMPR Return Codes
IEBCOMPR returns a code in register 15 to indicate the results of program exe-
cution. The return codes and their meanings are:

Codes Meaning

00 (X'00') Successful completion.

 Appendix A. Invoking Utility Programs from an Application Program 373

08 (X'08') An unequal comparison. Processing continues.

12 (X'0C') An unrecoverable error exists. The utility ends.

16 (X'10') A user routine passed a return code of 16 to IEBCOMPR. The utility
ends.

IEBCOPY Return Codes
IEBCOPY returns a code in register 15 to indicate the results of program execution.
The return codes and their meanings are:

Codes Meaning

00 (X'00') Successful completion.

04 (X'04') One or more copy group operations ended unsuccessfully or were
incompletely performed. Recovery may be possible.

08 (X'08') An unrecoverable error exists. The utility ends.

IEBCOPY User ABEND Codes
In a diagnostic situation, IEBCOPY may issue a user ABEND. This occurs only
when the procedures in DFSMS/MVS DFSMSdfp Diagnosis Reference are being
followed. An IEBCOPY message always precedes the ABEND. The ABEND code is
the same as the message number. For example, message IEB1021E will precede
user ABEND U1021.

IEBDG Return Codes
IEBDG returns a code in register 15 to indicate the results of program execution.
The return codes and their meanings are:

Codes Meaning

00 (X'00') Successful completion.

04 (X'04') A user routine returned a code of 16 to IEBDG. The utility ends at
the user's request.

08 (X'08') An error occurred while processing a set of utility control statements.
No data is generated following the error. Processing continues
normally with the next set of utility control statements, if any.

12 (X'0C') An error occurred while processing an input or output data set. The
utility ends.

16 (X'10') An error occurred from which recovery is not possible. The utility
ends.

IEBEDIT Return Codes
IEBEDIT returns a code in register 15 to indicate the results of program execution.
The return codes and their meanings are:

Codes Meaning

00 (X'00') Successful completion.

04 (X'04') An error occurred. The output data set may not be usable as a job
stream. Processing continues.

08 (X'08') An unrecoverable error occurred while attempting to process the
input, output, or control data set. The utility ends.

374 DFSMS/MVS V1R5 Utilities

IEBGENER Return Codes
IEBGENER returns a code in register 15 to indicate the results of program exe-
cution. The return codes and their meanings are:

Codes Meaning

00 (X'00') Successful completion.

04 (X'04') Probable successful completion. A warning message is written.

08 (X'08') Either processing was ended after you requested processing of user
header labels only, or a DBCS error was encountered.

12 (X'0C') Either an unrecoverable error exists and the job step is stopped, or a
DBCS error was encountered.

16 (X'10') A user routine passed a return code of 16 to IEBGENER. The utility
ends.

IEBIMAGE Return Codes
IEBIMAGE returns a code in register 15 that represents the most severe error con-
dition encountered during the program execution. This return code is also printed in
the output listing. The return codes and their meanings are:

Codes Meaning

00 (X'00') Successful completion; operations performed as requested.

04 (X'04') Operations performed; investigate messages for exceptional circum-
stances.

08 (X'08') Operations not performed; investigate messages.

12 (X'0C') Severe exception; processing may end.

16 (X'10') Unrecoverable exception; the utility ends.

20 (X'14') SYSPRINT data set could not be opened; the utility is ended.

24 (X'18') User parameter list incorrect; the utility is ended.

IEBISAM Return Codes
IEBISAM returns a code in register 15 to indicate the results of program execution.
The return codes and their meanings are:

Codes Meaning

00 (X'00') Successful completion.

04 (X'04') A return code of 04 or 12 was passed to IEBISAM by the user
routine.

08 (X'08') An error condition occurred that caused termination of the operation.

12 (X'0C') A return code other than 00, 04, 08, or 12 was passed to IEBISAM
from a user routine. The utility is ended.

16 (X'10') An error condition caused termination of the operation.

 Appendix A. Invoking Utility Programs from an Application Program 375

IEBPTPCH Return Codes
IEBPTPCH returns a code in register 15 to indicate the results of program exe-
cution. The return codes and their meanings are:

Codes Meaning

00 (X'00') Successful completion.

04 (X'04') Either a physical sequential data set is empty or a partitioned data
set has no members.

08 (X'08') A member specified for printing or punching does not exist in the
input data set and processing will continue with the next member, or
a DBCS error was encountered.

12 (X'0C') An unrecoverable error occurred, a user routine passed a return
code of 12 to IEBPTPCH and the utility is ended, or a DBCS error
was encountered.

16 (X'10') A user routine passed a return code of 16 to IEBPTPCH. The utility
is ended.

IEBUPDTE Return Codes
IEBUPDTE returns a code in register 15 to indicate the results of program exe-
cution. The return codes and their meanings are:

Codes Meaning

00 (X'00') Successful completion.

04 (X'04') A control statement is coded incorrectly or used erroneously. If either
the input or output is sequential, the utility is ended. If both are parti-
tioned, the program continues processing with the next function to be
performed.

12 (X'0C') An unrecoverable error exists. The utility is ended.

16 (X'10') A label processing code of 16 was received from a user's label proc-
essing routine. The utility is ended.

IEHINITT Return Codes
IEHINITT returns a code in register 15 to indicate the results of program execution.
The return codes and their meanings are:

Codes Meaning

00 (X'00') Successful completion. A message data set was created.

04 (X'04') Successful completion. No message data set was defined by the
user.

08 (X'08') IEHINITT completed its operation, but error conditions were encount-
ered during processing. A message data set was created.

12 (X'0C') IEHINITT completed its operation, but error conditions were encount-
ered during processing. No message data set was defined by the
user.

16 (X'10') IEHINITT ended operation because of error conditions encountered
while attempting to read the control data set. A message data set
was created if defined by the user.

376 DFSMS/MVS V1R5 Utilities

IEHLIST Return Codes
IEHLIST returns a code in register 15 to indicate the results of program execution.
The return codes and their meanings are:

Codes Meaning

00 (X'00') Successful completion.

08 (X'08') An error condition caused a specified request to be ignored. Proc-
essing continues.

12 (X'0C') A permanent input/output error occurred. The job is ended.

16 (X'10') An unrecoverable error occurred while reading the data set. The job
is ended.

IEHMOVE Return Codes
IEHMOVE returns a code in register 15 to indicate the results of program exe-
cution. The return codes and their meanings are:

Code Meaning

00 (X'00') Successful completion.

04 (X'04') A specified function was not completely successful. Processing con-
tinues.

08 (X'08') A condition exists from which recovery is possible. Processing con-
tinues.

12 (X'0C') An unrecoverable error exists. The utility is ended.

16 (X'10') It is impossible to OPEN the SYSIN or SYSPRINT data set. The
utility is ended.

IEHPROGM Return Codes
IEHPROGM returns a code in register 15 to indicate the results of program exe-
cution. The return codes and their meanings are:

Codes Meaning

00 (X'00') Successful completion.

04 (X'04') A syntax error was found in the name field of the control statement
or in the PARM field in the EXEC statement. Processing continues.

08 (X'08') A request for a specific operation was ignored because of an incor-
rect control statement or an otherwise invalid request. The operation
is not performed.

12 (X'0C') An input/output error was detected when trying to read from or write
to SYSPRINT, SYSIN or the VTOC. The utility is ended.

16 (X'10') An unrecoverable error exists. The utility is ended.

End of General-use programming interface

 Appendix A. Invoking Utility Programs from an Application Program 377

378 DFSMS/MVS V1R5 Utilities

Appendix B. Unload Partitioned Data Set Format

General-use programming interface

This appendix contains Product-sensitive Programming Interface and Associated
Guidance Information.

This appendix is intended to help you to use the unload data set created by an
IEBCOPY unload operation.

Product-sensitive programming interfaces allow the customer installation to perform
tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or tuning of
DFSMS/MVS. Use of such interfaces creates dependencies on the detailed design
or implementation of the IBM software product. Product-sensitive programming
interfaces should be used only for these specialized purposes. Because of their
dependencies on detailed design and implementation, it is to be expected that pro-
grams written to such interfaces may need to be changed in order to run with new
product releases or versions, or as a result of service.

 Introduction
An unload data set will have a format different from a partitioned data set or a
PDSE, no matter if the data set is being stored on a DASD device or on tape. Its
records will be longer and may require more space. It will have sequential organiza-
tion. You cannot always treat an unload data set the same as you would the ori-
ginal partitioned data set or PDSE.

It may be easy to confuse the unload data set, which is sequential, from the parti-
tioned data set or PDSE. The unload data set or container data set is the sequen-
tial data set created by the unload operation. The unloaded data set is the original
partitioned data set or PDSE that was unloaded into the unload data set.

Records Present in an Unload Data Set
This is a list of all of the types of records that may appear in an unload data set in
the groupings and order in which they must appear:

1. Unload File Header

� COPYR1, the first header record is always present.
� COPYR2, the second header record is always present.

 2. Directory Information

� Directory Block Records

One or more are always present.
Each record contains 1 or more partitioned data set directory blocks.
The last record also ends with an EOF block of 12 bytes of zeros.
For PDSE, a long name directory containing names greater than 8
characters will be included.

� Data Set Attribute Records

These are optional, and can only appear in a PDSE format unload data
set.

 Copyright IBM Corp. 1979, 1999 379

3. Individual Member Data (This group repeats for each member.)

� Note List Record

Used by the linkage editor and other applications to record relocatable
addresses of records inside the member.

� Member Data Records

One or more present.
Each record contains 1 or more physical blocks of the original data set.
The last record also ends with an EOF block (12 bytes of zeros).

� Member Attribute Records

These are optional, and can only appear in a PDSE format unload data
set.

A detailed description of the different records is given in later paragraphs.

Different Unload Data Set Formats
There are four different formats that the unload data set can take. The primary dif-
ference between them is which records can appear in the data set. These formats
are:

 1. Invalid Format

All records after the COPYR1 (if any) are undefined. The condition occurs
when an unload operation is ended because of an error. The COPYR1 is re-
written as the first record in the container data set with “Invalid Format” as part
of error clean-up.

2. Old Format (Pre-PDSE)

� There may be a note list record for each member.

� There are no attribute records.

� The original data set was a partitioned data set, not a PDSE.

� All DASD addresses are valid for a real device, and the DEB and DEVTAB
information comes from the DASD device which held the original data set.

� The second batch of data set label information (starting 46 bytes into
COPYR1 record) is not present.

 3. New Format

� Note list records are now used by the linkage editor and other applications
to record relocatable addresses of records inside the member.

� Attribute records may be present if the original data set is a PDSE.

� Records from a PDSE contain DASD addresses from an artificial device
that has 256 tracks and 65536 cylinders and tracks of 16M bytes. This con-
venience maps the maximum number of possible PDSE RLTs and MLTs
according to the restrictions for accessing PDSEs with BPAM documented
in the DFSMS/MVS Using Data Sets.

While these addresses of consecutive records are strictly ascending, some
addresses are not to be used. Record numbers for PDSE members are
always odd starting with 1 and continuing 3, 5, 7, 9... Even record numbers
are reserved.

380 DFSMS/MVS V1R5 Utilities

� The second batch of data set label information (starting 46 bytes into the
COPYR1 record) is valid.

 4. Transfer Format

This format is reserved for the future implementation of a self describing
canonical representation of the data from the original data set. It has not been,
and may never be defined. Potential contents include:

Program objects in a format defined for interchange between Language
Compilers and the Binder.
DDM Architecture self-describing data and records.

Detailed Record Descriptions

General Rules and Restrictions
1. The maximum unload record length is 32780, which occurs when the data set

being unloaded has a block size of 32760.

Note that this is longer than the maximum permitted physical block length of
32760 bytes, so sometimes records must be spanned across physical blocks.

This number also exceeds the maximum LRECL allowed in a data set label.
When the data set label LRECL is 32760, the assembled logical record may
actually be longer.

2. When a record must be spanned across physical blocks, each block except the
last must be completely filled.

3. The length of any unload data set physical record can never exceed the unload
data set logical record length plus 4, even when the data set block size would
allow a longer physical record.

 Header Records
The first two records of an IEBCOPY unload data set contain information that is
required to load the data set. The first record (COPYR1) contains a status field, an
ID field, and a DCB information field. The status and ID fields are used for validity
checking procedures. The DCB field is used to initialize the output data set during a
load function. The second record (COPYR2) contains parts of the original data
extent block (DEB) of the unloaded partitioned data set. When the data set is to be
loaded, this information is used to update all the user and note list TTRs.
Figure 123 and Figure 124 on page 383 show the different fields in the COPYR1
and COPYR2records.

Figure 123 (Page 1 of 3). Contents of the COPYR1 Descriptor Record

Offset Into
Record

Field size
(Bytes) Type Of Data Field Contents

0 64 Structure COPYR1 - first header record
0 4 Structure Block Descriptor Word (BDW) for RECFM=VS data sets
0 2 Unsigned

Binary
Length of block, including BDW

2 2 reserved Must be zero
4 4 Structure Segment Descriptor Word (SDW) for RECFM=VS data sets
4 2 Unsigned

Binary
Length of segment, including SDW

6 2 Bit Flags Must be zero (COPYR1 record is never segmented)
8 1 Bit Flags Unload Data set Information. Numbering the MSB as "0",

0 & 1 - B'00' = valid unload data set in old format.
B'01' = valid unload data set in PDSE format.

 Appendix B. Unload Partitioned Data Set Format 381

Figure 123 (Page 2 of 3). Contents of the COPYR1 Descriptor Record

Offset Into
Record

Field size
(Bytes) Type Of Data Field Contents

B'10' = the original data set cannot be reloaded because this unload data
set is known to be incomplete or in error.
B'11' = unload data set in transfer format.
2 - Reserved, and must be zero.
4 - When set, the original data set was known to contain program objects.
When not set, it is not known if the contents are or are not programs.
4 - Reserved, and must be zero.
5 - Reserved, and must be zero.
6 - Reserved, and must be zero.
7 - When set, the original data set was a PDSE.

9 3 Binary The constant value X'CA6D0F'.
(The following fields are from the original data set label (Format 1 DSCB).)

12 2 Bitstring Data set organization (DS1DSORG). X'0200' is PDS.
14 2 Unsigned

Binary
Block size (DS1BLKL)

16 2 Unsigned
Binary

Logical Record Length (DS1LRECL)

18 1 Bit Flags Record Format (DS1RECFM) Numbering the MSB as "0",
0 & 1 - B'00' is unknown format
B'01' is Variable format (RECFM=V)
B'10' is Fixed format (RECFM=F)
B'11' is Undefined (RECFM=U)
2 - When set, DASD track overflow may be used.
3 - When set, records may be blocked.
4 - When set, variable format records may be spanned; for fixed format only
the last block may be short.
5 & 6 - B'00' is first record byte is a data byte.
B'01' first byte is ANSI/ISO carriage control.
B'10' first byte IBM machine carriage control.
B'11' is an invalid combination.
7 - Reserved and may be either zero or one.

19 1 Unsigned
Binary

Length of record key field (DS1KEYL)

20 1 Bit Flags Option codes associated with the data set (DS1OPTCD)
21 1 Bit Flags SMS Indicators (DS1SMSFG). Numbering the MSB as "0",

0 - Managed data set
1 - unpredictable
2 - Data set is reblockable
3 - unpredictable
4 - Data set is a PDSE
5 - unpredictable
6 - Reserved
7 - Reserved, and must be zero. (End of fields from the original data set
label).

22 2 Unsigned
Binary

The block size of this container data set, which contains the unload data
set.

| 24| 20| Structure| Information about the device from which the data set was unloaded.
| Obtained by a DEVTYPE macro with the DEVTAB parameter. 1

44 2 Unsigned
Binary

Number of header records. Zero implies 2.

| 46| 18| reserved| Zeros in "old" format unload data set (The following fields are from the
| original data set label (Format 1 DSCB).)

46 1 reserved Must be zero
47 3 Structure Date last referenced yydddd (DS1REFD)
50 3 Structure Secondary Space Extension (DS1SCEXT)
53 4 Structure Secondary Allocation (DS1SCALO)
57 3 Structure Last Track Used TTR (DS1LSTAR)
60 2 Unsigned

Binary
Last Track Balance (DS1TRBAL)

62 2 reserved Must be zero (End of fields from the original data set label).

382 DFSMS/MVS V1R5 Utilities

Figure 123 (Page 3 of 3). Contents of the COPYR1 Descriptor Record

Offset Into
Record

Field size
(Bytes) Type Of Data Field Contents

Notes:

| 1. These fields are highly device dependent and are required to translate absolute DASD addresses (MBBCCHHR) in the
| member data records to relative addresses (TTR). The DEB control block and DEVTYPE macro are documented in
| DFSMS/MVS DFSMSdfp Advanced Services

Figure 124. Contents of the COPYR2 Descriptor Record

Offset Into
Record

Field size
(Bytes) Type Of Data Field Contents

0 284 Structure COPYR2 - first header record
0 4 Structure Block Descriptor Word (BDW) for RECFM=VS data sets
0 2 Unsigned

Binary
Length of block, including BDW

2 2 reserved Must be zero
4 4 Structure Segment Descriptor Word (SDW) for RECFM=VS data sets
4 2 Unsigned

Binary
Length of segment, including SDW

6 2 Bit Flags Must be zero (COPYR2 record is never segmented.)
8 16 Structure Last 16 bytes of basic section of the Data Extent Block (DEB) for the ori-

ginal data set. 1
24 256 Structure First 16 extent descriptions from the original DEB. 1
280 4 reserved Must be zero
Notes:

1. These fields are highly device dependent and are required to translate absolute DASD addresses (MBBCCHHR) in the
member data records to relative addresses (TTR). The DEB control block is documented in DFSMS/MVS DFSMSdfp
Advanced Services. DEVTAB information is documented inDFP System Data Administration.

Directory Block Records
The directory records are written immediately after the header records. They
consist of directory blocks containing the original directory entries for all members
to be unloaded. In addition, the last directory record contains an end-of-file block.

The length of each directory record, except the last one, is 8 + n(276), where n
represents the blocking factor (n is an integer greater than zero). The length of the
last directory record is 8 + n(276) &plus 12, where n represents the blocking factor
(which may be zero).

The directory blocks in the figure contain a count, key, and data field. The count
field is set to zero, except for the key length (X'08') and the data length
(X'0100'). See DFSMS/MVS Using Data Sets for more information about directory
blocks.

Figure 125 on page 384 gives the directory record format for the unloaded parti-
tioned data set. The following items have been assumed:

� The block size of the data set to contain the unloaded data set is 900 bytes.

� Seven pseudo directory blocks are required to contain the original directory
entries for all of the unloaded members.

 Appendix B. Unload Partitioned Data Set Format 383

LL

LL

LL

11

11

11

DB

DB

DB

DB

DB

DB

DB

DB

EOF

4

4

4

4

4

4

276 bytes

276 bytes

276 bytes

276 bytes

276 bytes

276 bytes

276 bytes

276 bytes

12

1

1 The end of file
directory record
contains 12 bytes of
hexadecimal zeros.

Figure 125. Directory Record Layout

 Attribute Records
A PDSE contains attributes which are recorded in attribute records. Attributes that
pertain to the whole data set follow the directory records. Those which pertain to a
member follow the member data records. The format for an unloaded attribute
record is shown in Figure 126.

LL 11 F xxx CCHHRKDD Attribute Data

4 4 1 3 8 bytes variable

The original key and data portion
of the note list record as it existed
in the partitioned data set

The original count field of the note
list record as it existed in the
partitioned data set

Unused (Set to zero)

Flag Byte
X’04’ Data Set Level
X’08’ Member Level

Record descriptor word for variable
data set records

Block descriptor word for variable
data set records

Figure 126. Attribute Record Layout

384 DFSMS/MVS V1R5 Utilities

Note List Records
Note list records as described below are obsolete and do not generally appear
even in old format unload data sets. Note lists are treated as member data in new
format unload data sets.

If a member to be unloaded contains a note list, the note list is unloaded preceding
the member data. The format for an unloaded note list record is shown in
Figure 127.

IEBCOPY User TTR Limits

� Three user TTRN fields in the directory.

� Only one of these fields may have n>0.

� The maximum length of the note list record identified by the user TTRN with
n>0 is 1291 bytes, including any block and record descriptor word.

� No TTRN fields in a note list record may have n>0.

� No user TTRN field in a note list record or in the partitioned data set directory
may have the leftmost bit on (that is, the most significant bit of the first “T” in
TTRN).

LL 11 F xxx CCHHRKDD Note List

4 4 1 3 8 bytes variable

The original key and data portion
of the note list record as it existed
in the partitioned data set

The original count field of the note
list record as it existed in the
partitioned data set

Unused (Set to zero)

Flag Byte
B’111xxxxx’ identifies a note list

(xxxxx bits are reserved)

Record descriptor word for variable
data set records

Block descriptor word for variable
data set records

Figure 127. Note List Record Layout

Member Data Records
An unloaded member data record consists of the maximum number of set member
data blocks that will fit into the unload data set record. The number of blocks in
each member data record varies when the partitioned data set or PDSE has unde-
fined or variable length blocks. A member data record contains member data blocks
from only one member and has an end of file block after the last member data
block.

 Appendix B. Unload Partitioned Data Set Format 385

Figure 128 on page 386 is an example of the format of unloaded member data
records. The following items have been assumed:

� The block size of the partitioned data set is 350 bytes.

� There are six member data blocks per member (including the direct access
end-of-file block).

� The record syntax of the partitioned data set is fixed.

� The block size of the data set to contain the unloaded data set is 900 bytes.

LL

LL

LL

11

11

11

MB

MB

MB

MB

MB

EOF

4

4

4

4

4

4

362 bytes

362 bytes

362 bytes

362 bytes

362 bytes

12 bytes

Figure 128. Member Data Record Layout

Figure 129 shows the make-up of each member data block.

F MBB CCHHRKDD Member Data Block

1 3 8 bytes y bytes1 1 In this example Y=350 bytes.

The original key and data portion of the
member data block as it existed in the
partitioned data set

The original count field of the member
data block as it existed in the
partitioned data set

The original extent (M) and binary (BB)
number of the member data block as it
existed in the partitioned data set

Flag Byte
X’00’ is member data

Figure 129. Member Data Block Layout

Figure 130 on page 387 shows the make up of the end-of-file block that follows
the last data block of a member.

386 DFSMS/MVS V1R5 Utilities

F MBB CCHHRKDD

1 3 8 bytes

The original count field of the end-of-member indicator as it
existed in the partitioned data set.

The original extent (M) and binary (BB) number of the
end-of-member indicator as it existed in the partitioned data
set.

X’80’ = end of data for unloaded PDSE member
X’00’ = end of data for an unloaded member data record

| Figure 130. End-of-File Block Layout

End of General-use programming interface

 Appendix B. Unload Partitioned Data Set Format 387

388 DFSMS/MVS V1R5 Utilities

Appendix C. Specifying User Exits with Utility Programs

General-use programming interface

This appendix documents General-use Programming Interface and Associated
Guidance Information.

This appendix is intended to help you to write user exits for utility programs.

 General Guidance
Exits can be specified with various utilities to:

� Modify physical records
� Handle I/O errors
� Process user input/output header and trailer labels.

The exits are specified in a parameter of the EXITS statement in the various utili-
ties, except for IEBDG and IEBUPDTE. The exits available from utility programs are

| listed in Figure 131. The IEBISAM exit for printing is described in “Printing the
| Logical Records of an ISAM Data Set” on page 205.

Figure 131 (Page 1 of 2). User-Exit Routines Specified with Utilities

Exit Routine When Available Utilities Where Specified

Modify physical records
before processing by
IEBGENER

After the physical record is read
and before any editing is per-
formed

IEBGENER DATA parameter of EXITS state-
ment

Input header or trailer
label

When the data set is opened for
input (header) or closed (trailer)

IEBCOMPR,
IEBGENER,
IEBPTPCH

INHDR/INTLR parameters of
EXITS statement

IEBUPDTE PARM parameter of the EXEC JCL
statement or INHDR, INTLR,
OUTHDR, and OUTTLR parameter
of ADD, CHANGE, REPL, or
REPRO statements.

Output header or trailer
label

When the data set is opened for
output (header) or closed (trailer)

IEBCOMPR,
IEBGENER

OUTHDR/OUTLR parameters of
EXITS statement

Totaling Prior to IEBGENER writing of
each physical record (sequential
data sets only)

IEBGENER TOTAL parameter of EXITS state-
ment

IEBUPDT TOTAL parameter on the ADD,
CHANGE, REPL, or REPRO State-
ments

I/O error When permanent error occurs in
IEBGENER

IEBGENER IOERROR parameter of EXITS
statement

Error detected by
IEBCOMPR

After unequal comparison IEBCOMPR ERROR parameter of EXITS state-
ment

Build output record key Prior to IEBGENER writing of a
record

IEBGENER KEY parameter of EXITS state-
ment

 Copyright IBM Corp. 1979, 1999 389

Figure 131 (Page 2 of 2). User-Exit Routines Specified with Utilities

Exit Routine When Available Utilities Where Specified

Process logical records
of input data sets before
comparison

Before input records are proc-
essed by IEBCOMPR

IEBCOMPR PRECOMP parameter of EXITS
statement

Process IEBPTPCH
input/output records

Before logical record is proc-
essed (INREC) or before logical
record is written (OUTREC)

IEBPTPCH INREC/OUTREC parameters of
EXITS statement

Analyze or modify
IEBDG output record

After output record is con-
structed, but before it is placed in
the output data set

IEBDG EXIT parameter of CREATE state-
ment

Register Contents at Entry to Routines from Utility Programs

Register Contents

1 Address of the parameter list.

13 Address of the register save area. The save area must not be used by
user label processing routines.

14 Return address to utility.

15 Entry address to the exit routine.

 Programming Considerations
| The exit routine must reside in the job library, step library, or link library.

Returning from an Exit Routine
An exit routine returns control to the utility program by means of the RETURN
macro instruction in the exit routine. Registers 1 through 14 must be restored
before control is returned to the utility program.

The format of the RETURN macro instruction is:

where:

(r,r)
specifies the range of registers, from 0 to 15, to be reloaded by the utility
program from the register save area. For example, (14,12) indicates that all
registers except register 13 are to be restored. If this parameter is omitted, the
registers are considered properly restored by the exit routine.

RC={n|(15)}
specifies a decimal return code in register 15. If RC is omitted, register 15 is
loaded as specified by (r,r).

n specifies a return code to be placed in register 15.

[label] RETURN [(r,r)]
[,RC={n|(15)}]

390 DFSMS/MVS V1R5 Utilities

(15)
specifies that general register 15 already contains a valid return code.

A user label processing routine must return a code in register 15 as shown in
Figure 132 unless:

� The buffer address was set to zero before entry to the label processing routine.
In this case, the system resumes normal processing regardless of the return
code.

� The user label processing routine was entered after an unrecoverable output
error occurred. In this case the system tries to resume normal processing.

Figure 132 shows the return codes that can be issued to utility programs by user
exit routines.

Figure 132 (Page 1 of 2). Return Codes That Must Be Issued by User Exit Routines

Type of Exit
Return
Code Action

Input Header or Trailer
Label (except for
IEBUPDTE when
UPDATE=INPLACE)

0 The system resumes normal processing. If
there are more labels in the label group, they
are ignored.

4 The next user label is read into the label
buffer area and control is returned to the
user's routine. If there are no more labels,
normal processing is resumed.

16 The utility program is ended on request of
the user routine.

Input Header or Trailer
Label for IEBUPDTE
UPDATE=INPLACE

0 The system resumes normal processing; any
additional user labels are ignored.

4 The system does not write the label. The
next user label is read into the label buffer
area and control is returned to the user exit
routine. If there are no more user labels, the
system resumes normal processing.

8 The system writes the user labels from the
label buffer area and resumes normal proc-
essing.

12 The system writes the user label from the
label buffer area, then reads the next input
label into the label buffer area and returns
control to the label processing routine. If
there are no more user labels, the system
resumes normal processing.

 Appendix C. Specifying User Exits with Utility Programs 391

Figure 132 (Page 2 of 2). Return Codes That Must Be Issued by User Exit Routines

Type of Exit
Return
Code Action

Output Header or Trailer
Label

0 The system resumes normal processing. No
label is written from the label buffer area.

4 The user label is written from the label buffer
area. The system then resumes normal proc-
essing.

8 The user label is written from the label buffer
area. If fewer than eight labels have been
created, the user's routine again receives
control so that it can create another user
label. If eight labels have been created, the
system resumes normal processing.

16 The utility program is ended on request of
the user routine.

Totaling Exits 0 Processing continues, but no further user
exits are taken.

4 Normal operation continues.

8 Processing ceases, except for EOD proc-
essing on output data set (user label proc-
essing).

16 Utility program is stopped.

ERROR 0 Record is not placed in the error data set.
Processing continues with the next record.

4 Record is placed in the error data set
(SYSUT3).

8 Record is not placed in error data set but is
processed as a valid record (sent to
OUTREC and SYSUT2 if specified).

16 Utility program is ended.

OUTREC (IEBPTPCH) 4 Record is not placed in normal output data
set.

12 or 16 Utility program is ended.

Any other
number

Record is placed in normal output data set
(SYSUT2).

All other exits 0-11 (Set to
next multiple
of four)

Return code is compared to highest previous
return code; the higher is saved and the
other discarded. At the normal end of job,
the highest return code is passed to the
calling processor.

12 or 16 Utility program is stopped and this return
code is passed to the calling processor.

392 DFSMS/MVS V1R5 Utilities

Parameters Passed to Label Processing Routines
The parameters passed to a user label processing routine are addresses of: the
80-byte label buffer, the DCB being processed, the status information if an unrecov-
erable input/output error occurs, and the totaling area.

The 80-byte label buffer contains an image of the user label when an input label is
being processed. When an output label is being processed, the buffer contains no
significant information at entry to your label processing routine. When the utility
program has been requested to generate labels, your label processing routine must
construct a label in the label buffer.

If standard user labels (SUL) are specified on the DD statement for a data set, but
the data set has no user labels, the system still takes the specified exits to the
appropriate user routine. In such a case, the user input label processing routine is
entered with the buffer address parameter set to zero.

The format and content of the DCB are explained in DFSMS/MVS Macro
Instructions for Data Sets.

Bit 0 of flag 1 in the DCB-address parameter is set to a value of 0 except when:

� Volume trailer or header labels are being processed at volume switch time.

� The trailer labels of a DISP=MOD data set are being processed (when the data
set is opened).

If an unrecoverable input/output error occurs while reading or writing a user label,
the appropriate label processing routine is entered with bit 0 of flag 2 in the status
information address parameter set on. The three low order bytes of this parameter
contain the address of standard status information as supplied for SYNAD routines.
(The SYNAD routine is not entered.)

Parameters Passed to Nonlabel Processing Routines
Figure 133 shows the programs from which exits can be taken to nonlabel proc-
essing routines, the names of the exits, and the parameters available for each exit
routine.

Figure 133 (Page 1 of 2). Parameter Lists for Nonlabel Processing Exit Routines

Program Exit Parameters

IEBGENER KEY Address at which key is to be placed (record follows
key); address of DCB.

DATA Address of SYSUT1 record; address of DCB.

IOERROR Address of DECB; cause of the error and address of
DCB. (Address in lower order three bytes and cause
of error in high order byte.)

IEBCOMPR ERROR Address of DCB for SYSUT1; address of DCB for
SYSUT2.

PRECOMP Address of SYSUT1 record; length of SYSUT1
record, address of SYSUT2 record; length of
SYSUT2 record.

IEBPTPCH INREC Address of input record; length of the input record.

OUTREC Address of output record; length of the output record.

 Appendix C. Specifying User Exits with Utility Programs 393

Figure 133 (Page 2 of 2). Parameter Lists for Nonlabel Processing Exit Routines

Program Exit Parameters

Processing User Labels
User labels can be processed by IEBCOMPR, IEBGENER, IEBPTPCH,
IEBUPDTE, and IEHMOVE. In some cases, user-label processing is automatically
performed; in other cases, you must indicate the processing to be performed. In
general, you can:

� Process user labels as data set descriptors.

� Process user labels as data.

� Total the processed records before they are written (IEBGENER and
IEBUPDTE only).

For either of the first two options, you must specify SUL on the DD statement that
defines each data set for which user-label processing is desired. For totaling rou-
tines, OPTCD=T must be specified on the DD statement.

You cannot update labels by means of the IEBUPDTE program. This function must
be performed by a user label processing routine. IEBUPDTE will, however, allow
you to create labels on the output data set from data supplied in the input stream.

IEHMOVE does not allow exits to user routines and does not recognize options
concerning the processing of user labels as data. IEHMOVE always moves or
copies user labels directly to a new data set.

Volume switch labels of a multivolume data set cannot be processed by IEHMOVE,
IEBGENER, or IEBUPDTE. Volume switch labels are lost when these utilities
create output data sets. To ensure that volume switch labels are retained, process
multivolume data sets one volume at a time.

Processing User Labels as Data Set Descriptors
When user labels are to be processed as data set descriptors, one of your label
processing routines receives control for each user label of the specified type. Your
routine can include, exclude, or modify the user label. Processing of user labels as
data set descriptors is indicated on an EXITS statement with keyword parameters
that name the label processing routine to be used.

The user exit routine receives control each time the OPEN, EOV, or CLOSE routine
encounters a user label of the type specified.

Figure 134 on page 395 illustrates the action of the system at OPEN, EOV, or
CLOSE time. When OPEN, EOV, or CLOSE recognizes a user label and when
SUL has been specified on the DD statement for the data set, control is passed to
the utility program. Then, if an exit has been specified for this type of label, the
utility program passes control to the user routine. Your routine processes the label
and returns control, along with a return code, to the utility program. The utility
program then returns control to OPEN, EOV, or CLOSE.

394 DFSMS/MVS V1R5 Utilities

This cycle is repeated up to eight times, depending upon the number of user labels
in the group and the return codes supplied by your routine.

Figure 134. System Action at OPEN, EOV, or CLOSE Time

Exiting to a Totaling Routine
When an exit is taken to a totaling routine, an output record is passed to the routine
just before the record is written. The first halfword of the totaling area pointed to by
the parameter contains the length of the totaling area, and should not be used by
your routine. If you have specified user label exits, this totaling area (or an image of
this area) is pointed to by the parameter list passed to the appropriate user label
routine.

An output record is defined as a physical record (block), except when IEBGENER
is used to process and reformat a data set that contains spanned records.

The code returned by the totaling routine determines system response as shown in
Figure 135.

Codes Meaning

00 (X'00') Processing is to continue, but no further exits are to be taken.

04 (X'04') Normal processing is to continue.

08 (X'08') Processing is to stop, except for EOD processing on the output data
set (user label processing).

16 (X'10') Processing is to be stopped.

Figure 135. User Totaling Routine Return Codes

 Appendix C. Specifying User Exits with Utility Programs 395

Processing User Labels as Data
When user labels are processed as data, the group of user labels, as well as the
data set, is subject to the normal processing done by the utility program. You can
have labels printed or punched by IEBPTPCH, compared by IEBCOMPR, or copied
by IEBGENER.

To specify that user labels are to be processed as data, include a LABELS state-
ment in the job step that is to process user labels as data.

There is no direct relationship between the LABELS statement and the EXITS
statement. Either or both can appear in the control statement stream for an exe-
cution of a utility program. If there are user label-processing routines, however, their
return codes may influence the processing of the labels as data. In addition, a user
output label-processing routine can override the action of a LABELS statement
because it receives control before each output label is written. At this time, the label
created by the utility as a result of the LABELS statement is in the label buffer, and
your routine can modify it.

Using an Exit Routine with IEBDG
IEBDG provides a user exit so you can analyze or further modify a newly con-
structed record before it is placed in the output data set. This exit routine is speci-
fied on the CREATE statement.

The CREATE statement defines the contents of records to be made available to a
user routine or to be written directly as output records.

After processing each potential output record, the user routine should provide a
return code in register 15 to instruct IEBDG how to handle the output record. The
return codes are listed in Figure 136.

When an exit routine is loaded and you return control to IEBDG, register 1 contains
the address of the first byte of the output record.

Codes Meaning

00 (X'00') The record is to be written.

04 (X'04') The record is not to be written. The skipped record is not to be
counted as a generated output record; processing is to continue as
though a record were written. If skips are requested through user
exits and input records are supplied, each skip causes an additional
input record to be processed in the generation of output records. For
example, if a CREATE statement specifies that 10 output records are
to be generated and a user exit indicates that two records are to be
skipped, 12 input records are processed.

12 (X'0C') The processing of the remainder of this set of utility control state-
ments is to be bypassed. Processing is to continue with the next
DSD statement.

16 (X'10') All processing is to halt.

Figure 136. IEBDG User Exit Return Codes

396 DFSMS/MVS V1R5 Utilities

End of General-use programming interface

 Appendix C. Specifying User Exits with Utility Programs 397

398 DFSMS/MVS V1R5 Utilities

Appendix D. IEHLIST VTOC Listing

Figure 137 and Figure 138 on page 400 show sample outputs produced by
IEHLIST. The first sample output, Figure 137 is a listing of a volume table of con-
tents from an extended format sequential data set. The VTOC listing of an
extended format sequential data set will differ from that of sequential and parti-
tioned data sets and PDSEs. Figure 138 on page 400 is a IEHLIST VTOC listing
that is typical for a sequential or partitioned data set, or a PDSE. The primary differ-
ence between these two kinds of VTOC listings (extended format sequential data
sets and all other types of data sets) can be found in the LST BLK field of the
outputs. In addition, if IEHLIST is producing a VTOC listing of an extended format
sequential data set, the attribute E will be included under the field SMS.IND. For
more information on the characteristics of extended format sequential data sets,
see DFSMS/MVS Using Data Sets.

A detailed explanation of the fields in the VTOC listing follows the figures. Please
note that the explanation of the LST BLK field contains two different entries—one for
an extended format sequential data set (TTTT-R), and one for a sequential or parti-
tioned data set, or PDSE (T-R-L).

Please note also that the following figures are only examples of IEHLIST VTOC
listings. Your actual VTOC listing produced by IEHLIST will differ.

SYSTEMS SUPPORT UTILITIES---IEHLIST PAGE 1
DATE: 1992.26ð TIME: 17.13.16

CONTENTS OF VTOC ON VOL 1Pð4ð1 <THIS IS AN SMS MANAGED VOLUME>
---------------DATA SET NAME---------------- SER NO SEQNO DATE.CRE DATE.EXP DATE.REF EXT DSORG RECFM OPTCD BLKSIZE
EXAMPLE.OF.FORMAT 1Pð4ð1 1 1992.26ð ðð.ððð 1992.26ð 2ð PS F ðð 2ð48ð
SMS.IND LRECL KEYLEN INITIAL ALLOC 2ND ALLOC EXTEND LAST BLK(TTTT-R) DIR.REM F2 OR F3(C-H-R) DSCB(C-H-R)
S E 2ð48ð TRKS 1 19 2 ð 1 6 ð 1 4

EXTENTS NO LOW(C-H) HIGH(C-H) NO LOW(C-H) HIGH(C-H) NO LOW(C-H) HIGH(C-H)
 ð ð 4 ð 4 1 1 ð 1 ð 2 1 1 1 1
 3 1 5 1 5 4 1 6 1 6 5 1 7 1 7
 6 1 8 1 8 7 1 9 1 9 8 1 1ð 1 1ð

9 1 11 1 11 1ð 1 12 1 12 11 1 13 1 13
12 1 14 1 14 13 2 ð 2 ð 14 2 1 2 1

 15 2 2 2 2
16 2 3 2 3 17 2 4 2 4 18 2 5 2 5

 19 2 6 2 6
----ON THE ABOVE DATA SET,THERE ARE ð EMPTY TRACK(S).

Figure 137. IEHLIST Sample Output—VTOC (for extended format sequential data sets)

 Copyright IBM Corp. 1979, 1999 399

SYSTEMS SUPPORT UTILITIES---IEHLIST PAGE 1

DATE: 1987.284 TIME: 18.44.59
CONTENTS OF VTOC ON VOL EXAMPL <THIS IS AN SMS MANAGED VOLUME>

THERE IS A 1 LEVEL VTOC INDEX

 FORMAT 4 DSCB NO AVAIL/MAX DSCB /MAX DIRECT NO AVAIL NEXT ALT FORMAT 6 LAST FMT 1 VTOC EXTENT THIS DSCB
VI DSCBS PER TRK BLK PER TRK ALT TRK TRK(C-H) (C-H-R) DSCB(C-H-R)/LOW(C-H) HIGH(C-H) (C-H-R)
81 1587 53 46 15 885 ð 3 14 53 2 ð 3 14 2 ð 1

---------------DATA SET NAME---------------- SER NO SEQNO DATE.CRE DATE.EXP DATE.REF EXT DSORG RECFM OPTCD BLKSIZE
EXAMPLE.OF.FORMAT EXAMPL 1 1987.284 ðð.ððð ðð.ððð 1 PS F ðð 2ð48

SMS.IND LRECL KEYLEN INITIAL ALLOC 2ND ALLOC EXTEND LAST BLK(T-R-L) DIR.REM F2 OR F3(C-H-R) DSCB(C-H-R)
 SR 2ð48 TRKS CONTIG ð 28 18 ð 2 ð 3

EXTENTS NO LOW(C-H) HIGH(C-H)
 ð ð 1 1 14

----ON THE ABOVE DATA SET, THERE ARE ð EMPTY TRACK(S).

VPSM A = NUMBER OF TRKS IN ADDITION TO FULL CYLS IN THE EXTENT
 TRK FULL TRK FULL TRK FULL TRK FULL TRK FULL TRK FULL
 ADDR CYLS A ADDR CYLS A ADDR CYLS A ADDR CYLS A ADDR CYLS A ADDR CYLS A
 6C 881 ð

 THERE ARE 881 EMPTY CYLINDERS PLUS ð EMPTY TRACKS ON THIS VOLUME
 THERE ARE 1587 BLANK DSCBS IN THE VTOC ON THIS VOLUME
 THERE ARE 518 UNALLOCATED VIRS IN THE INDEX

Figure 138. IEHLIST Sample Output—VTOC (for sequential, partitioned data sets and PDSEs)

Explanation of Fields in IEHLIST Formatted VTOC Listing

Field Explanation

BLKSIZE Block size, in bytes, up to 32760 or device maximum.

� For fixed-length records, block size is set.
� For variable or undefined-length records, maximum block size is indicated.
� Format V unblocked records have a block size 4 greater than the LRECL value.

DATA SET NAME Maximum length 44 bytes.

DATE.CRE Creation date for the data set, in the Julian form yyyy.ddd , where ddd is the day and yyyy is the year
from 1900 to 2155.

DATE.EXP Expiration date for the data set, in the Julian form yyyy.ddd , where ddd is the day and yyyy is the year
from 1900 to 2155.

DATE.REF Last referenced date for the data set, in the Julian form yyyy.ddd where ddd is the day and yyyy is the
year from 1900 to 2155.

DIR.REM In a partitioned data set in which the last directory block is being used, this value will be the number of
bytes consumed in that 256-byte block. If no value appears here, the partitioned data set has not yet
reached the last directory block.

DSORG Data set organization (by access method):

� DA = Direct (BDAM)
� IS = Indexed Sequential (ISAM, QISAM, BISAM)
� PO = Partitioned (BPAM)
� PS = Physical Sequential (SAM, QSAM, BSAM)

The following condition may also appear after any of the above organizations:

� U = Unmovable (location-dependent).

EXT Number of extents (sections) the data set has on this volume.

400 DFSMS/MVS V1R5 Utilities

Field Explanation

EXTEND Original secondary allocation quantity if type of space request was bytes, kilobytes or megabytes. Ori-
ginal average block length if type of space request was average block. The actual secondary value is
followed by one of the following 2-character identifiers:

� AV Average block length
� BY Original secondary quantity in bytes
� KB Original secondary quantity in kilobytes
� MB Original secondary quantity in megabytes

EXTENT NO LOW
(C-H) HIGH (C-H)

The cylinder and head (track) address of each extent.

FMT 2 OR 3
(C-H-R)/DSCB (C-H-R)

Two addresses are possible here, each pointing to a data set control block (DSCB) in the VTOC. The
cylinder-head(track)-record address on the right always appears and points to the DSCB whose partial
contents you are now looking at: the Format 1 DSCB.

There may also be a Format 2 or Format 3 DSCB associated with it. The Format 3 address will be
present only for data sets that have exceeded three extents, such that a Format 3 DSCB must be used
to contain information about the additional extents. For ISAM data sets, which cannot exceed one
extent, the address on the left will point to a Format 2 DSCB.

INITIAL ALLOC Describes the space attribute that was used for allocating all data set extents.

� RECS = average block size
� TRKS = Tracks
� BLKS = Blocks
� CYLS = Cylinders
� ABSTR = Absolute tracks (absolute addresses)

KEYLEN Byte length (1-255) of the key of the data records in this data set. 0 indicates that no key exists.

LAST BLK PTR (T-R-L) Points to the last block written in a sequential or partitioned data set or PDSE. The first number (two
digits) is the track, relative to the beginning of the data set. The second number is the block, relative to
the beginning of the track. The last number is the number of bytes remaining on the track following that
block. If the device is greater than 64k tracks and if the data set is a PDSE, then the field may be blank.

LAST BLK PTR
(TTTT-R)

Points to the last block written in an extended format sequential data set. The first number (four bytes)
is the track, relative to the beginning of the data set. The second number is the block, relative to the
beginning of the track.

LRECL Logical record length, in bytes, up to 32760 for nonspanned and 32756 for spanned records.

� For fixed-length records, LRECL is the actual record length.
� For variable-length records, LRECL is the maximum length permitted by the device.
� For undefined-length records, LRECL is zero.

OPTCD Option code (as supplied in the DCB used to create the data set). This 1-byte code is given in
hexadecimal characters. See the DS1OPTCD field in the DSCB1 data area in DFSMS/MVS DFSMSdfp
Advanced Services.

RECFM Record format:

� F = Fixed length
� V = Variable length
� D = ASCII variable length
� U = Undefined length.

 The following options may also be specified:

� B = Blocked records
� S = Spanned records
� T = Track overflow permitted
� A = ISO/ANSI control characters
� M = Machine control characters.

SEQNO Order of this volume relative to the first volume containing the data set. (SEQ NO will be equal to 1,
unless this is a multivolume data set.)

SER NO Serial number of volume containing the data set. Maximum length 6 bytes. (The serial number may
| vary if the volume has been renamed since the data set was written, but thiis field should be the same
| for each format 1 DSCB for the data set.)

 Appendix D. IEHLIST VTOC Listing 401

Field Explanation

SMS.IND System-managed storage attributes.

� B = Optimal block size selected by DADSM create
| � C = Compressed format

� E = Extended format
| � I = Data set is a PDSE or HFS data set (not an HFS file)

� R = Data set is reblockable
� S = SMS-managed data set
� U = No BCS entry exists for data set
� ? = One of the following:

– PDSE and extended format sequential data sets cannot coexist. Both bits are on.

– extended format sequential data set bit must be on when the compressed extended format data
set bit is on.

2ND ALLOC Secondary allocation quantity. If zero, the data set is limited to its primary allocated extent; otherwise, it
can expand as necessary into a maximum of 15 more extents, each of which is this number of blocks,
tracks, or cylinders in size.

The following fields apply to ISAM data sets only.

Field Explanation

ADHIN (M-B-C-H) Address of the first track of the highest-level master index. The last two fields, C and H, are the cylinder
and head (track) address.

ADLIN (M-B-C-H) Address of the first track of the lowest-level master index. The last two fields, C and H, are the cylinder
and head (track) address.

CYLAD (M-B-C-H) Address of the first track of the cylinder index. The last two fields, C and H, are the cylinder and head
(track) address.

CYLOV Number of tracks reserved for cylinder overflow area on each cylinder.

LCYAD (C-H-R) Address of the last index entry in the cylinder index, by cylinder, head (track), and record number.

LMSAD (C-H-R) Address of the last index entry in the master index, by cylinder, head (track), and record number.

LPRAD (M-B-C-H-R) Address of the last record in the prime data area. The last three fields, C, H, and R, are the cylinder,
head (track), and record numbers.

LTRAD (C-H-R) Address of the last normal entry in the track index on the cylinder containing the last prime data record
of the data set, by cylinder, head (track), and record number.

L2MIN (C-H-R) Address of the last active index entry in the second-level master index, by cylinder, head (track), and
record number.

L3MIN Address of the last active index entry in the third-level master index, by cylinder, head (track), and
record number.

NOBYT Number of bytes needed to hold the highest-level index in main storage.

NOLEV Number of index levels.

NOTRK Number of tracks occupied by the highest-level index.

OVRCT Number of records in the overflow area.

PRCTR Number of records in the prime data area.

PTRDS (C-H-R) Pointer to Format 3 DSCB if a continuation is needed to describe this data set. C, H, and R are the
cylinder, head (track), and record numbers.

RORG1 Number of cylinder overflow areas that are full.

TAGDT The user-supplied number of records tagged for deletion. This field is merged to and from the DCB for
BISAM, QSAM scan mode, and resume-load.

2MIND (M-B-C-H) Address of the first track of the second-level master index (if present). The last two fields, C and H, are
the cylinder and head (track) address.

3MIND (M-B-C-H) Address of the first track of the third-level master index (if present). The last two fields, C and H, are
the cylinder and head (track) address.

402 DFSMS/MVS V1R5 Utilities

 Abbreviations

The following abbreviations are defined as they are
used in the DFSMS/MVS* library. If you do not find the
abbreviation you are looking for, see IBM Dictionary of
Computing New York: McGraw-Hill, 1994.

This list may include acronyms and abbreviations from:

� American National Standard Dictionary for Informa-
tion Systems, ANSI X3.172-1990, copyright 1990 by
the American National Standards Institute (ANSI).
Copies may be purchased from the American
National Standards Institute, 11 West 42nd Street,
New York, New York 10036.

� Information Technology Vocabulary developed by
Subcommittee 1, Joint Technical Committee 1, of
the International Organization for Standardization
and the International Electrotechnical Commission
(ISO/IEC JTC1/SC1).

A
ACDS. Active control data set

ACS. Automatic class selection

ADSP. Automatic data set protection

AMS. Access method services

APF. Authorization program facility

B
BDAM . Basic direct access method

BCDIC. Binary-coded decimal interchange code

BCS. Basic catalog structure

BSAM . Basic sequential access method

D
DASD. Direct access storage device

DBCS. Double-byte character set

DCB. data control block

DD. Device definition

DDM. Distributed Data Management

DFDSS. Data Facility Data Set Services

DFSORT. Data Facility SORT

DSCB. Data set control block

E
EBCDIC. Extended binary-coded decimal interchange
code

EPA. Entry point address

ERTB. Error table

F
FCB. forms control buffer

G
GDG. Generation data group

GDS. Generation data set

I
ICKDSF. Device Support Facilities

IDCAMS. Access method services

ISAM. Indexed sequential access method

ISMF. Interactive storage management facility

ISPF. Interactive System Productivity Facility

J
JCL . Job control language

M
MVS. Multiple Virtual Storage

O
OAM. Object access method

 Copyright IBM Corp. 1979, 1999 403

P
PDF. Parogram Development Facility

PDS. Partitioned data set

PDSE. Partitioned data set extended

PDSU. Partitioned data set unloaded

Q
QSAM. Queued sequential access method

R
RACF. Resource Access Control Facility

RLD. Relocation dictionary

S
SCDS. Source control data set

SLR. Service Level Reporter

SMF. System management facilities

SMS. Storage Management Subsystem or system-
managed storage

SUL. Standard user labels

T
TSO/E. Time Sharing Option Extensions

TVOL. Mounted Tape Volume Application

U
UCS. Universal character set

V
VIO. Virtual input/output

VS. Variable spanned

VSAM. Virtual storage access method

VTOC. Volume table of contents

404 DFSMS/MVS V1R5 Utilities

 Glossary

The following terms are defined as they are used in the
DFSMS/MVS Library. If you do not find the term you
are looking for, see the IBM Software Glossary:

http://www.networking.ibm.com/nsg/nsgmain.htm

This glossary is an ever-evolving document that defines
technical terms used in the documentation for many
IBM software products.

A
active control data set (ACDS) . A VSAM linear data
set that contains a copy of the most recently activated
SMS configuration and subsequent updates. The ACDS
is shared by each system that is using the same SMS
configuration to manage storage. See also source
control data set and communications data set.

active data . (1) Data that can be accessed without
any special action by the user, such as data on primary
storage or migrated data. Active data also can be
stored on tape volumes. (2) For tape mount manage-
ment, application data that is frequently referenced,
small in size, and managed better on DASD than on
tape. Contrast with inactive data.

aggregate backup . The process of copying an aggre-
gate group and recovery instructions so that a collection
of data sets can be recovered later as a group.

aggregate group . A collection of related data sets and
control information that have been pooled to meet a
defined backup or recovery strategy.

automated tape library . A device consisting of robotic
components, cartridge storage areas, tape subsystems,
and controlling hardware and software, together with the
set of tape volumes that reside in the library and can be
mounted on the library tape drives. See also tape
library. Contrast with manual tape library.

automatic backup . (1) In DFSMShsm, the process of
automatically copying data sets from primary storage
volumes or migration volumes to backup volumes. (2) In
OAM, the process of automatically copying objects from
DASD, optical, or tape volumes contained in an object
storage group, to backup volumes contained in an
object backup storage group.

automatic class selection (ACS) routine . A proce-
dural set of ACS language statements. Based on a set
of input variables, the ACS language statements gen-

erate the name of a predefined SMS class, or a list of
names of predefined storage groups, for a data set.

automatic data set protection (ADSP) . In MVS, a
user attribute that causes all permanent data sets
created by the user to be automatically defined to
RACF with a discrete RACF profile.

automatic dump . In DFSMShsm, the process of using
DFSMSdss automatically to do a full-volume dump of all
allocated space on a primary storage volume to desig-
nated tape dump volumes.

automatic primary space management insert . In
DFSMShsm, the process of deleting expired data sets,
deleting temporary data sets, releasing unused space,
and migrating data sets from primary storage volumes
automatically.

automatic secondary space management . In
DFSMShsm, the process of automatically deleting
expired migrated data sets, deleting expired records
from the migration control data sets, and migrating eli-
gible data sets from migration level 1 volumes to
migration level 2 volumes.

automatic volume space management . In
DFSMShsm, the process that includes automatic
primary space management and interval migration.

availability . For a storage subsystem, the degree to
which a data set or object can be accessed when
requested by a user.

B
backup . The process of creating a copy of a data set
or object to be used in case of accidental loss.

base configuration . The part of an SMS configuration
that contains general storage management attributes,
such as the default management class, default unit, and
default device geometry. It also identifies the systems or
system groups that an SMS configuration manages.

basic catalog structure (BCS) . The name of the
catalog structure in the integrated catalog facility envi-
ronment. See also integrated catalog facility catalog.

binder . The DFSMS/MVS program that processes the
output of language translators and compilers into an
executable program (load module or program object). It
replaces the linkage editor and batch loader in MVS

 Copyright IBM Corp. 1979, 1999 405

C
cache fast write . A storage control capability in which
the data is written directly to cache without using non-
volatile storage. Cache fast write is useful for temporary
data or data that is readily recreated, such as the sort
work files created by DFSORT. Contrast with DASD fast
write.

capacity planning . The process of forecasting and
calculating the appropriate amount of physical com-
puting resources required to accommodate an expected
workload.

Cartridge System Tape . The base tape cartridge
media used with 3480 or 3490 Magnetic Tape Subsys-
tems. Contrast with Enhanced Capacity Cartridge
System Tape.

class transition . An event that brings about change to
an object’s service-level criteria, causing OAM to invoke
ACS routines to assign a new storage class or manage-
ment class to the object.

compress . (1) To reduce the amount of storage
required for a given data set by having the system
replace identical words or phrases with a shorter token
associated with the word or phrase. (2) To reclaim the
unused and unavailable space in a partitioned data set
that results from deleting or modifying members by
moving all unused space to the end of the data set.

communications data set (COMMDS) . The primary
means of communication among systems governed by
a single SMS configuration. The COMMDS is a VSAM
linear data set that contains the name of the ACDS and
current utilization statistics for each system–managed
volume, which helps balance space among systems
running SMS. See also active control data set and
source control data set.

concurrent copy . A function to increase the accessi-
bility of data by enabling you to make a consistent
backup or copy of data concurrent with the usual appli-
cation program processing.

connectivity . (1) The considerations regarding how
storage controls are joined to DASD and processors to
achieve adequate data paths (and alternative data
paths) to meet data availability needs. (2) In a DFSMS
environment, the system status of volumes and storage
groups.

convert in place . See in-place conversion.

D
DASD fast write . An extended function of some
models of the IBM 3990 Storage Control in which data
is written concurrently to cache and nonvolatile storage
and automatically scheduled for destaging to DASD.
Both copies are retained in the storage control until the
data is completely written to the DASD, providing data
integrity equivalent to writing directly to the DASD. Use
of DASD fast write for system-managed data sets is
controlled by storage class attributes to improve per-
formance. See also dynamic cache management. Con-
trast with cache fast write.

DASD volume . A DASD space identified by a
common label and accessed by a set of related
addresses. See also volume, primary storage, migration
level 1, migration level 2.

data class . A collection of allocation and space attri-
butes, defined by the storage administrator, that are
used to create a data set.

Data Facility Sort (DFSORT) . An IBM licensed
program that is a high-speed data processing utility.
DFSORT provides an efficient and flexible way to
handle sorting, merging, and copying operations, as
well as providing versatile data manipulation at the
record, field, and bit level.

data set . In DFSMS/MVS, the major unit of data
storage and retrieval, consisting of a collection of data
in one of several prescribed arrangements and
described by control information to which the system
has access. In OS/390 non-UNIX environments, the
terms data set and file are generally equivalent and
sometimes are used interchangeably. See also file. In
OS/390 UNIX environments, the terms data set and file
have quite distinct meanings.

default device geometry . Part of the SMS base con-
figuration, it identifies the number of bytes per track and
the number of tracks per cylinder for converting space
requests made in tracks or cylinders into bytes, when
no unit name has been specified.

default management class . Part of the SMS base
configuration, it identifies the management class that
should be used for system-managed data sets that do
not have a management class assigned.

default unit . Part of the SMS base configuration, it
identifies an esoteric (such as SYSDA) or generic (such
as 3390) device name. If a user omits the UNIT param-
eter on the JCL or the dynamic allocation equivalent,
SMS applies the default unit if the data set has a dispo-
sition of MOD or NEW and is not system-managed.

Device Support Facilities (ICKDSF) . A program used
for initialization of DASD volumes and track recovery.

406 DFSMS/MVS V1R5 Utilities

DFSMS environment . An environment that helps
automate and centralize the management of storage.
This is achieved through a combination of hardware,
software, and policies. In the DFSMS environment for
MVS, the function is provided by DFSORT, RACF, and
the combination of DFSMS/MVS and MVS.

DFSMSdfp . A DFSMS/MVS functional component or
base element of OS/390, that provides functions for
storage management, data management, program man-
agement, device management, and distributed data
access.

DFSMSdss . A DFSMS/MVS functional component or
base element of OS/390, used to copy, move, dump,
and restore data sets and volumes.

DFSMShsm . A DFSMS/MVS functional component or
base element of OS/390, used for backing up and
recovering data, and managing space on volumes in the
storage hierarchy.

DFSMShsm-managed volume . (1) A primary storage
volume, which is defined to DFSMShsm but which does
not belong to a storage group. (2) A volume in a
storage group, which is using DFSMShsm automatic
dump, migration, or backup services. Contrast with
system-managed volume and DFSMSrmm-managed
volume.

DFSMShsm-owned volume . A storage volume on
which DFSMShsm stores backup versions, dump
copies, or migrated data sets.

DFSMS/MVS. An IBM System/390 licensed program
that provides storage, data, and device management
functions. When combined with MVS/ESA SP Version 5
it composes the base MVS/ESA operating environment.
DFSMS/MVS consists of DFSMSdfp, DFSMSdss,
DFSMShsm, and DFSMSrmm.

DFSMSrmm . A DFSMS/MVS functional component or
base element of OS/390, that manages removable
media.

DFSMSrmm-managed volume . A tape volume that is
defined to DFSMSrmm. Contrast with system-managed
volume and DFSMShsm-managed volume.

drive definition . A set of attributes used to define an
optical disk drive as a member of a real optical library
or pseudo optical library.

dual copy . A high availability function made possible
by nonvolatile storage in some models of the IBM 3990
Storage Control. Dual copy maintains two functionally
identical copies of designated DASD volumes in the
logical 3990 subsystem, and automatically updates both
copies every time a write operation is issued to the dual
copy logical volume.

dummy storage group . A type of storage group that
contains the serial numbers of volumes no longer con-
nected to a system. Dummy storage groups allow
existing JCL to function without having to be changed.
See also storage group.

dump class . A set of characteristics that describes
how volume dumps are managed by DFSMShsm.

duplexing . The process of writing two sets of identical
records in order to create a second copy of data.

dynamic cache management . A function that auto-
matically determines which data sets will be cached
based on the 3990 subsystem load, the characteristics
of the data set, and the performance requirements
defined by the storage administrator.

E
Enhanced Capacity Cartridge System Tape . Car-
tridge system tape with increased capacity that can only
be used with 3490E Magnetic Tape Subsystems. Con-
trast with Cartridge System Tape.

error recovery . A procedure for copying, storing, and
recovering data essential to an installation's business in
a secure location, and for recovering that data in the
event of an error at installation. Contrast with vital
records.

esoteric unit name . A name used to define a group of
devices having similar hardware characteristics, such as
TAPE or SYSDA. Contrast with generic unit name.

expiration . The process by which data sets or objects
are identified for deletion because their expiration date
or retention period has passed. On DASD, data sets
and objects are deleted. On tape, when all data sets
have reached their expiration date, the tape volume is
available for reuse.

extended format . The format of a data set that has a
data set name type (DSNTYPE) of EXTENDED. The
data set is structured logically the same as a data set
that is not in extended format but the physical format is
different. See also striped data set and compressed
format.

F
filtering . The process of selecting data sets based on
specified criteria. These criteria consist of fully or
partially-qualified data set names or of certain data set
characteristics.

 Glossary 407

G
generic unit name . A name assigned to a class of
devices with the same geometry (such as 3390). Con-
trast with esoteric unit name.

global access checking . In RACF, the ability to
establish an in-storage table of default values containing
authorization levels for selected resources. RACF refers
to this table prior to performing its usual RACHECK
processing, and grants the request without performing a
RACHECK if the requested access authority does not
exceed the global value. Global access checking can
grant a user access to the resource, but it cannot deny
access.

global resource serialization (GRS) . A component of
MVS used for serializing use of system resources and
for converting hardware reserves on DASD volumes to
data set enqueues.

group . (1) With respect to partitioned data sets, a
member and the member's aliases that exist in a PDS
or PDSE, or in an unloaded PDSE. (2) A collection of
users who can share access authorities for protected
resources.

H
Hardware Configuration Definition (HCD) . An inter-
active interface in MVS/ESA SP that enables an instal-
lation to define hardware configurations from a single
point of control.

I
implementation by milestone . A conversion
approach that allows for a staged conversion of your
installation’s data to system-managed storage on
DASD, tape, or optical devices.

improved data recording capability (IDRC) . A
recording mode that can increase the effective cartridge
data capacity and the effective data rate when enabled
and used. IDRC is always enabled on the 3490E Mag-
netic Tape Subsystem.

inactive data . (1) A copy of active data, such as vital
records or a backup copy of a data set. Inactive data is
never changed, but can be deleted or superseded by
another copy. (2) In tape mount management, data that
is written once and never used again. The majority of
this data is point-in-time backups. (3) Objects infre-
quently accessed by users and eligible to be moved to
the optical library or shelf. Contrast with active data.

indexed VTOC . A volume table of contents with an
index that contains a list of data set names and free

space information, which allows data sets to be located
more efficiently.

in-place conversion . The process of bringing a
volume and the data sets it contains under the control
of SMS without data movement, using DFSMSdss.

integrated catalog facility catalog . A catalog that is
composed of a basic catalog structure (BCS) and its
related volume tables of contents (VTOCs) and VSAM
volume data sets (VVDSs). See also basic catalog
structure and VSAM volume data set.

Interactive Storage Management Facility (ISMF) .
The interactive interface of DFSMS/MVS that allows
users and storage administrators access to the storage
management functions.

interval migration . In DFSMShsm, automatic
migration that occurs when a threshold level of occu-
pancy is reached or exceeded on a
DFSMShsm-managed volume, during a specified time
interval. Data sets are moved from the volume, largest
eligible data set first, until the low threshold of occu-
pancy is reached.

M
management class . A collection of management attri-
butes, defined by the storage administrator, used to
control the release of allocated but unused space; to
control the retention, migration, and backup of data
sets; to control the retention and backup of aggregate
groups, and to control the retention, backup, and class
transition of objects.

manual tape library . A set of tape drives defined as a
logical unit by the installation together with the set of
system-managed volumes which can be mounted on
those drives. See also tape library. Contrast with auto-
mated tape library.

migration . The process of moving unused data to
lower cost storage in order to make space for high-
availability data. If you wish to use the data set, it must
be recalled. See also migration level 1 and migration
level 2.

migration level 1 . DFSMShsm-owned DASD volumes
that contain data sets migrated from primary storage
volumes. The data can be compressed. See also
storage hierarchy. Contrast with primary storage and
migration level 2.

migration level 2 . DFSMShsm-owned tape or DASD
volumes that contain data sets migrated from primary
storage volumes or from migration level 1 volumes. The
data can be compressed. See also storage hierarchy.
Contrast with primary storage and migration level 1.

408 DFSMS/MVS V1R5 Utilities

MVS/ESA. An MVS operating system environment that
supports ESA/390.

MVS/ESA SP. An IBM licensed program used to
control the MVS operating system. MVS/ESA SP
together with DFSMS/MVS compose the base
MVS/ESA operating environment. See also OS/390.

N
nondisruptive installation . A capability that allows
users to access data in an existing storage subsystem
while installing additional devices in the subsystem.

nonvolatile storage (NVS) . Additional random access
electronic storage with a backup battery power source,
available with an IBM Cache Storage Control, used to
retain data during a power outage. Nonvolatile storage,
accessible from all storage directors, stores data during
DASD fast write and dual copy operations.

O
OAM-managed volumes . Optical or tape volumes
controlled by the object access method (OAM).

object . A named byte stream having no specific format
or record orientation.

object access method (OAM) . An access method
that provides storage, retrieval, and storage hierarchy
management for objects and provides storage and
retrieval management for tape volumes contained in
system-managed libraries.

object backup storage group . A type of storage
group that contains optical or tape volumes used for
backup copies of objects. See also storage group.

object directory tables . A collection of DB2 tables
that contain information about the objects that have
been stored in an object storage group.

object storage group . A type of storage group that
contains objects on DASD, tape, or optical volumes.
See also storage group.

object storage hierarchy . A hierarchy consisting of
objects stored in DB2 table spaces on DASD, on optical
or tape volumes that reside in a library, and on optical
or tape volumes that reside on a shelf. See also storage
hierarchy.

object storage tables . A collection of DB2 tables that
contain objects.

optical disk drive . The mechanism used to seek,
read, and write data on an optical disk. An optical disk
drive can be operator-accessible, such as the 3995

Optical Library Dataserver, or stand-alone, such as the
9346 or 9347 optical disk drives.

optical library . A storage device that houses optical
drives and optical cartridges, and contains a mechanism
for moving optical disks between a cartridge storage
area and optical disk drives.

optical volume . Storage space on an optical disk,
identified by a volume label. See also volume.

P
partitioned data set (PDS) . A data set on direct
access storage that is divided into partitions, called
members, each of which can contain a program, part of
a program, or data.

partitioned data set extended (PDSE) . A system-
managed data set that contains an indexed directory
and members that are similar to the directory and
members of partitioned data sets. A PDSE can be used
instead of a partitioned data set.

partitioned data set unloaded (PDSU) . An IEBCOPY
unload data set. A sequential file that can be restored
by IEBCOPY to create a PDS.

performance . (1) A measurement of the amount of
work a product can produce with a given amount of
resources. (2) In a DFSMS environment, a measure-
ment of effective data processing speed with respect to
objectives set by the storage administrator. Perform-
ance is largely determined by throughput, response
time, and system availability.

permanent data set . A user-named data set that is
normally retained for longer than the duration of a job or
interactive session. Contrast with temporary data set.

pool storage group . A type of storage group that con-
tains system-managed DASD volumes. Pool storage
groups allow groups of volumes to be managed as a
single entity. See also storage group.

primary space allocation . Amount of space
requested by a user for a data set when it is created.
Contrast with secondary space allocation.

primary storage . A DASD volume available to users
for data allocation. The volumes in primary storage are
called primary volumes. See also storage hierarchy.
Contrast with migration level 1 and migration level 2.

program object . All or part of a computer program in
a form suitable for loading into virtual storage for exe-
cution. Program objects are stored in PDSE program
libraries and have fewer restrictions than load modules.
Program objects are produced by the binder.

 Glossary 409

pseudo optical library . A set of shelf-resident optical
volumes associated with either a stand-alone or an
operator-accessible optical disk drive; see also real
optical library.

R
real optical library . Physical storage device that
houses optical disk drives and optical cartridges, and
contains a mechanism for moving optical disks between
a cartridge storage area and optical disk drives. Con-
trast with pseudo optical library.

recovery . The process of rebuilding data after it has
been damaged or destroyed, often by using a backup
copy of the data or by reapplying transactions recorded
in a log.

removable media library . The volumes that are avail-
able for immediate use, and the shelves where they
could reside.

Resource Access Control Facility (RACF) . An
IBM-licensed program or a base element of OS/390,
that provides for access control by identifying and veri-
fying the users to the system, authorizing access to pro-
tected resources, logging the detected unauthorized
attempts to enter the system, and logging the detected
accesses to protected resources.

Resource Measurement Facility (RMF) . An IBM
licensed program or optional element of OS/390, that
measures selected areas of system activity and pre-
sents the data collected in the format of printed reports,
system management facilities (SMF) records, or display
reports. Use RMF to evaluate system performance and
identify reasons for performance problems.

S
secondary space allocation . Amount of additional
space requested by the user for a data set when
primary space is full. Contrast with primary space allo-
cation.

sequential data striping . A software implementation
of a disk array that distributes data sets across multiple
volumes to improve performance.

service-level agreement . (1) An agreement between
the storage administration group and a user group
defining what service-levels the former will provide to
ensure that users receive the space, availability, per-
formance, and security they need. (2) An agreement
between the storage administration group and oper-
ations defining what service-level operations will provide
to ensure that storage management jobs required by
the storage administration group are completed.

Service Level Reporter (SLR) . An IBM licensed
program that provides the user with a coordinated set of
tools and techniques and consistent information to help
manage the data processing installation. For example,
SLR extracts information from SMF, IMS, and CICS
logs, formats selected information into tabular or graphic
reports, and gives assistance in maintaining database
tables.

shelf . A place for storing removable media, such as
tape and optical volumes, when they are not being
written to or read.

shelf location . A single space on a shelf for storage
of removable media.

SMS configuration . A configuration base, Storage
Management Subsystem class, group, library, and drive
definitions, and ACS routines that the Storage Manage-
ment Subsystem uses to manage storage. See also
base configuration and source control data set.

source control data set (SCDS) . A VSAM linear data
set containing an SMS configuration. The SMS config-
uration in an SCDS can be changed and validated
using ISMF. See also active control data set and com-
munications data set.

storage administration group . A centralized group
within the data processing center that is responsible for
managing the storage resources within an installation.

storage administrator . A person in the data proc-
essing center who is responsible for defining, imple-
menting, and maintaining storage management policies.

storage class . A collection of storage attributes that
identify performance goals and availability requirements,
defined by the storage administrator, used to select a
device that can meet those goals and requirements.

storage control . The component in a storage sub-
system that handles interaction between processor
channel and storage devices, runs channel commands,
and controls storage devices.

storage director . In a 3990 Storage Control, a logical
entity consisting of one or more physical storage paths
in the same storage cluster. In a 3880, a storage
director is equivalent to a storage path.

storage group . A collection of storage volumes and
attributes, defined by the storage administrator. The col-
lections can be a group of DASD volumes or tape
volumes, or a group of DASD, optical, or tape volumes
treated as a single object storage hierarchy. See also
VIO storage group, pool storage group, tape storage
group, object storage group, object backup storage
group, and dummy storage group.

410 DFSMS/MVS V1R5 Utilities

storage group category . A grouping of specific
storage groups which contain the same type of data.
This concept is analogous to storage pools in a non-
system-managed environment.

storage hierarchy . An arrangement of storage
devices with different speeds and capacities. The
levels of the storage hierarchy include main storage
(memory, DASD cache), primary storage (DASD con-
taining uncompressed data), migration level 1 (DASD
containing data in a space-saving format), and migration
level 2 (tape cartridges containing data in a space-
saving format). See also primary storage, migration
level 1, migration level 2, and object storage hierarchy.

storage location . A location physically separate from
the removable media library where volumes are stored
for disaster recovery, backup, and vital records man-
agement.

storage management . The activities of data set allo-
cation, placement, monitoring, migration, backup, recall,
recovery, and deletion. These can be done either manu-
ally or by using automated processes. The Storage
Management Subsystem automates these processes for
you, while optimizing storage resources. See also
Storage Management Subsystem.

Storage Management Subsystem (SMS) . A
DFSMS/MVS facility used to automate and centralize
the management of storage. Using SMS, a storage
administrator describes data allocation characteristics,
performance and availability goals, backup and
retention requirements, and storage requirements to the
system through data class, storage class, management
class, storage group, and ACS routine definitions.

storage subsystem . A storage control and its
attached storage devices. See also tape subsystem.

stripe . In DFSMS/MVS, the portion of a striped data
set that resides on one volume. The records in that
portion are not always logically consecutive. The system
distributes records among the stripes such that the
volumes can be read from or written to simultaneously
to gain better performance. Whether it is striped is not
apparent to the application program.

system data . The data sets required by MVS or its
subsystems for initialization and control.

system-managed data set . A data set that has been
assigned a storage class.

system-managed storage . Storage managed by the
Storage Management Subsystem. SMS attempts to
deliver required services for availability, performance,
and space to applications. See also DFSMS environ-
ment.

system-managed tape library . A collection of tape
volumes and tape devices, defined in the tape config-
uration database. A system-managed tape library can
be automated or manual. See also tape library.

system-managed volume . A DASD, optical, or tape
volume that belongs to a storage group. Contrast with
DFSMShsm-managed volume and
DFSMSrmm-managed volume.

system management facilities (SMF) . A component
of MVS that collects input/output (I/O) statistics, pro-
vided at the data set and storage class levels, which
helps you monitor the performance of the direct access
storage subsystem.

system programmer . A programmer who plans, gen-
erates, maintains, extends, and controls the use of an
operating system and applications with the aim of
improving overall productivity of an installation.

T
tape configuration database . One or more volume
catalogs used to maintain records of system-managed
tape libraries and tape volumes.

tape librarian . The person who manages the tape
library.

tape library . A set of equipment and facilities that
support an installation’s tape environment. This can
include tape storage racks, a set of tape drives, and a
set of related tape volumes mounted on those drives.
See also system-managed tape library and automated
tape library.

Tape Library Dataserver . A hardware device that
maintains the tape inventory associated with a set of
tape drives. An automated tape library dataserver also
manages the mounting, removal, and storage of tapes.

tape mount management . The methodology used to
optimize tape subsystem operation and use, consisting
of hardware and software facilities used to manage tape
data efficiently.

tape storage group . A type of storage group that con-
tains system-managed private tape volumes. The tape
storage group definition specifies the system-managed
tape libraries that can contain tape volumes. See also
storage group.

tape subsystem . A magnetic tape subsystem con-
sisting of a controller and devices, which allows for the
storage of user data on tape cartridges. Examples of
tape subsystems include the IBM 3490 and 3490E Mag-
netic Tape Subsystems.

 Glossary 411

tape volume . A tape volume is the recording space on
a single tape cartridge or reel. See also volume.

temporary data set . An uncataloged data set whose
name begins with & or &&, that is normally used only
for the duration of a job or interactive session. Contrast
with permanent data set.

U
unmovable data set . A DASD data set required by an
application, which cannot be moved. Unmovable data
sets need to be identified to the system so that they are
not relocated. They can be identified by allocation the
data set in absolute tracks or by allocating a data set
with the data set organization that includes the unmov-
able attribute. For example, data sets allocated as PSU,
POU, DAU, or ABSTR are considered unmovable.

use attribute . (1) The attribute assigned to a DASD
volume that controls when the volume can be used to
allocate new data sets; use attributes are public,
private, and storage. (2) For system-managed tape
volumes, use attributes are scratch and private.

user group . A group of users in an installation who
represent a single department or function within the
organization.

user group representative . A person within a user
group who is responsible for representing the user
group's interests in negotiations with the storage admin-
istration group.

V
validate . To check the completeness and consistency
of an individual ACS routine or an entire SMS config-
uration.

virtual input/output (VIO) storage group . A type of
storage group that allocates data sets to paging

storage, which simulates a DASD volume. VIO storage
groups do not contain any actual DASD volumes. See
also storage group.

vital records . A data set or volume maintained for
meeting an externally-imposed retention requirement,
such as a legal requirement. Compare with disaster
recovery.

vital record specification . Policies defined to manage
the retention and movement of data sets and volumes
for disaster recovery and vital records purposes.

volume . The storage space on DASD, tape, or optical
devices, which is identified by a volume label. See also
DASD volume, optical volume, and tape volume.

volume mount analyzer . A program that helps you
analyze your current tape environment. With tape mount
management, you can identify data sets that can be
redirected to the DASD buffer for management using
SMS facilities.

volume status . In the Storage Management Sub-
system, indicates whether the volume is fully available
for system management:

� “Initial” indicates that the volume is not ready for
system management because it contains data sets
that are ineligible for system management.

� “Converted” indicates that all of the data sets on a
volume have an associated storage class and are
cataloged in an integrated catalog facility catalog.

� “Non-system-managed” indicates that the volume
does not contain any system-managed data sets
and has not been initialized as system-managed.

VSAM volume data set (VVDS) . A data set that
describes the characteristics of VSAM and system-
managed data sets residing on a given DASD volume;
part of an integrated catalog facility catalog. See also
basic catalog structure and integrated catalog facility
catalog.

412 DFSMS/MVS V1R5 Utilities

 Index

Numerics
3800 Printing Subsystem Model 1

FCB module structure 145
GRAPHIC module structure 155
module types 141

3800 Printing Subsystem Model 3
creating graphic character set modules 177
creating library character set modules 177
GRAPHIC module structure 155

4248 FCB module structure 146
4248 printer

creating FCB module 177
4248 printer module 141

A
abbreviations

exceptions 46
key words 46

ABEND codes
IEBCOPY program 374

ACCESS parameter
INITT statement 273

ADD statement 353
IEBUPDTE program 239, 244
IEHPROGM program 353

alias name
BLDA 350
changing member 333
copying member 30
creating for partitioned member 248
DLTA 350

ALIAS statement
IEBUPDTE program 248

allocation/deallocation, dynamic
multitasking environment

unpredictable result 344
ALTERMOD statement

IEBCOPY program 35, 46
restrictions 35

anyname DD statement
IEHINITT program 269, 270
IEHLIST program 285
IEHMOVE program 310
IEHPROGM program 343, 344

anyname1 DD statement
IEBCOPY program 41, 44

anyname2 DD statement
IEBCOPY program 41

APF (Authorized Program Facility)
invoking utility program 369

attribute records
IEBCOPY unload data set 384

B
backup

data set 117
example 61
IEBCOPY program 27
ISAM data set 203
member 117
verify with IEBCOMPR program 13

basic direct access method 301
See also BDAM

BDAM
macro 302

BDAM (basic direct access method)
cataloging in CVOL 335
copying 301
moving 301
renaming 333
scratching 333

BLDA (built index alias) statement
IEHPROGM program 350

BLDG statement, IEHPROGM program
GDG index 352

BLDX (build index) statement
IEHPROGM program 349

block size
COPYMOD statement 51
unload data set 28

MAXBLK, MINBLK 28, 45
buffer

IEHMOVE program 308
work area 37

building a GDG index
BLDA statement 352

building an index 350
with IEHPROGM 333

building an index alias
syntax 350

C
card input

comparing data sets
example 20

cataloged data set, moving
example 330, 331

CATLG statement
IEHPROGM program 348

function restrictions 335

 Copyright IBM Corp. 1979, 1999 413

CHANGE statement
IEBUPDTE program 239, 244

channel codes 164
See also printer channel codes

character arrangement table 141
building

example 188, 190
creating 150, 169
deleting graphic reference

example 190
listing 152
modifying

example 188, 190
structure 151

CHARSET statement
IEBIMAGE program

syntax 173, 174
module 158
statement 173, 175

CLOSE macro
user label 395

COMPARE statement
IEBCOMPR program

syntax 16
comparing

partitioned data set
example 22

sequential data set
example 20

comparing, IEBCOMPR program
card input, data set

example 20
copying partitioned data set

example 22
copying sequential data set

example 20
data sets

partitioned 13, 21, 22
PDSE 13, 22, 23
sequential 13, 18, 21

different density sequential data sets
example 19

PDSE
example, comparing 22

tape input, data sets
example 20

tape resident data set
example 19

COMPRESS parameter
IEBCOPY program 42

compress-in-place operation
data set 34
processing considerations 34, 35

CONNECT statement
IEHPROGM program 350

control statement 6
See also job control statement
See also utility control statement

converting
H-set BCDIC to EBCDIC 131
load modules to program objects 25
packed decimal to unpacked decimal 131
partitioned data set to PDSE 26, 78
program objects to load modules 25
sequential to partitioned data set or PDSE 117
unpacked decimal to packed decimal 131

COPY CATALOG statement
IEHMOVE program 319, 320

COPY DSGROUP statement
IEHMOVE program 314, 316

COPY DSNAME statement
IEHMOVE program 312, 314

COPY PDS statement 311
IEHMOVE program 316, 318

COPY statement
IEBCOPY program 34, 46, 48

COPY VOLUME statement
IEHMOVE program 320, 321

COPYAUTH statement
moving and copying 297

COPYGRP
member

replacing 33
COPYGRP statement

IEBCOPY program 46, 49, 50
syntax 49

copying
basic

sequential data set 298
BDAM data set 301
BDAM macro 302
cataloged data sets 303
COPYAUTH statement 297
CVOL 304, 305

SMS-managed volume 304
data set with delimiter

example 115
data sets 298, 305
DBCS 121

example 138
directory information 28
edited statements

example 114
edited steps

example 114
examples 112, 116
IEBCOPY program 23

COPY statement 46, 48
COPYGRP statement 46, 49
COPYMOD statement 46, 50
data set 26
load modules 35

414 DFSMS/MVS V1R5 Utilities

copying (continued)
IEBCOPY program (continued)

members with aliases 30
unload data set 28

IEBUPDTE program
example 260

IEHMOVE program 311, 312
ISAM

description 203
example 209

job statement
example 112, 114, 116

job step
example 112, 114, 116

load modules 35
member

excluding 30
with an alias 30

modification module
creating 149, 166
example, building 185, 187
IEBIMAGE listing 178
overrun notes 178
printing data, specifying 141

multiple jobs
example 113

multiple operations
examples 64, 72

multivolume 302
optional

sequential data set 298
partitioned data set 299

example 22, 54, 60
IEBCOPY program 25, 78

partitioned data set extended
IEBCOPY program 79, 80

partitioned data sets
IEBCOPY program 26

PDSE 26
example 54

RACF 297
reblocking 297
select members

example 59
sequential data set 298

example 20, 115, 116, 134, 136, 138, 139
SMS-managed volume 293
unload data set 28
unloaded 302
unmovable 303
unsuccessful space allocated 296
user label 117
volume 305

copying multiple operations
examples 72

COPYMOD statement
description 35
example 185
IEBCOPY program 46, 50, 51
IEBIMAGE listing with overrun notes 168
IEBIMAGE program 166, 169
module 149
syntax 50, 167

CREATE parameter
user exit routines 389

CREATE statement 92
CVOL 349

BLDX statement 345
building

GDG index 339
cataloging 335
cataloging data set

example 359
connecting 337

example 359
copying 304
data set 304, 335
DLTX statement 345
GDG 339
GDG index

example, building 360
index 339

building alias 336
deleting alias 336
generation data group 362

listing
entries 279, 286
entries, examples 289, 290
IEHLIST program 286

maintaining
GDG index 339

moving 304
example 331

releasing 337
renaming data set

example 357
SMS-managed data sets 335
uncataloging data set

example 357
ICF (integrated catalog facility) 357

D
DATA parameter

user exit routines 389
data set 13

See also partitioned data set
See also PDSE
See also sequential data set
comparing 13
copying

BDAM 298, 301

 Index 415

data set (continued)
copying (continued)

cataloged group 303
description 293
IEBCOPY program 25
IEBGENER program 117
IEHMOVE program 298, 312
multivolume 302
partitioned 298
sequential 298
unloaded 302
unmovable attribute 303
volume 305

creating new master
example 254

edited 119
example

scratching 356
uncataloging 356

I/O 109
IEBUPDTE program

library 235
library member

example, adding records 257
logical record length 120
maintaining a password 339
member

renaming 32
replacing 31

members
aliases 333

merging 27
moving

BDAM 298, 301
cataloged group 303
description 293
IEHMOVE program 298, 312
multivolume 302
partitioned 298
sequential 298
unloaded 302
unmovable attribute 303
volume 305

new generation, create
example 260

organization, changing 235
printing 213
punching 213
reblocking 297
renaming

example 357
scratching 356

example 356
sequential

example, card input 259
space allocation

IEHMOVE program 295

data set (continued)
SYS1.IMAGELIB 141
uncataloging 356

example 357
unload

copying, IEBCOPY program 28
DCB parameter, IEBCOPY program 28
loading, IEBCOPY program 28

utility programs summary 5
data statements

IEBUPDTE program 246
user-designed characters 172, 175

DATE field in formatted VTOC listing 400
DBCS (double-byte character set)

copying 121
editing 121
example, editing 138
printing 121, 214

example 234
punching 214
reblocking 121
SO/SI

characters 121
deleting 130
inserting 130

validating 121
DCB parameter 28

IEBCOPY program
unloading data set 28, 45

OPTCD=W 44
overriding 204

DD JCL statement
IEBCOMPR program 15
IEBCOPY program 43, 45
IEBDG program 85
IEBEDIT program 110
IEBGENER program 123
IEBIMAGE program 161
IEBISAM program 207
IEBPTPCH program 216
IEBUPDTE program 237, 238
IEHINITT program 270, 271
IEHLIST program 285, 286
IEHMOVE program 309, 311
IEHPROGM program 344, 345
IFHSTATR program 366

DDM attributes
copying 26

ddname statement
INITT statement 272

debugging tool
IEBDG utility 81

delete index alias
syntax 350

DELETEP statement, IEHPROGM program 354
syntax 354

416 DFSMS/MVS V1R5 Utilities

density
comparing sequential data sets

example 19
detail statement

IEBUPDTE program 244, 246
restrictions 246

determining the IEBCOPY operation
COPY operation 46
load operation

partitioned output data set 46
sequential input data set 46

partitioned data sets
input 46
output 46

unload operation
partitioned input data set 46
sequential output data set 46

device
variable 10

DFSMSdss (Data Facility Data Set Services) 306
DFSMSrmm 268
DFSORT (Data Facility Sort) 117
diagnosis

CVOL 279
directory block allocation

merging data sets 27
directory list

edited format 280
directory records

IEBCOPY unload data set 383
DISP parameter

INITT statement 272
DLTA (delete index alias) statement

IEHPROGM program 350
DLTX (delete index) statement

IEHPROGM program 349
double-byte character set 214

See also DBCS
DSCB model

example 361
DSD statement, IEBDG program 86

E
EDIT statement, IEBEDIT program

syntax 111
edited data set

creating 119
printing 213
punching 213

editing
DBCS 121

example 138
sequential data set

example 136, 138

END statement
IEBDG program 98

ENDUP statement, IEBUPDTE program 249
entry routines

utility programs 390
EOV (end-of-volume)

user label 395
ERROR parameter

user exit routines 389
ESV (error statistics by volume) data

IFHSTATR program
example, printing 367
printing 363
printout 365
sorting 364

EXCLUDE statement
COPY statement

DSGROUP 311
PDS 311

IEBCOPY program 46, 51, 53
IEHMOVE program 323
MOVE statement

DSGROUP 311
PDS 311

exclusive copying
 IEBCOPY program 32

EXEC JCL statement
IEBCOPY program 41
IEBEDIT program 110

EXEC statement
IEBGENER program 122, 123
IEBIMAGE program 160
IEBISAM program

syntax 208
IEBPTPCH program 216
IEBUPDTE program 236
IEHINITT program 269
IEHLIST program

syntax 285
IEHMOVE program 307

syntax 307
IEHPROGM program 344
IFHSTATR program 366

exit routine
identifying 126
IEBCOMPR program 16
IEBDG program 98
IEBISAM program

programming interface 206
IEBPTPCH program 222
IEBUPDTE program 237, 241, 242
nonlabel processing routine 393
return codes 391
RETURN macro 390
totaling 395
utility programs 389

 Index 417

EXIT statement
IEBCOMPR program

syntax 16
IEBGENER program

syntax 126
IEBPTPCH program 222

syntax 222

F
FCB (forms control buffer)

3800 printer module 141
4248 printer module 141
character arrangement table module

example, building 188, 190
example, deleting graphic reference 190
example, modifying 188, 190

graphic character modification module
example, defining 194
example, printing 191, 194
example, using 194

IEBIMAGE program
syntax 163

library character set module
example, building 197, 198
example, building from multiple sources 200
example, listing 197
example, modifying 198

module 144
3800 FCB module 145, 163
4248 FCB module 146, 163
creating 162
example, building 180, 187
example, replacing 181, 183
IEBIMAGE listing 147
IEBIMAGE program 162
structure 145, 146

printers 143
statement 162

IEBIMAGE program 166
FD statement, IEBDG program 87, 92
formatting

IFHSTATR program
type 21 records 363

full copy
IEBCOPY program 31

function restrictions
CATLG statement, IEHPROGM program 335
UNCATLG statement, IEHPROGM program 335

FUNCTION statement
IEBUPDTE program 239, 261

syntax 239
restrictions 242

G
GDG (generation data group)

CVOL index
building 339, 355, 362
example, building 360
maintaining 339

index
example, building 361

GENERATE statement
IEBGENER program 125

generation data group 339
See also GDG

graphic character modification module 141
building 188, 197
creating 154, 170
example, building 192, 193
example, printing 191
IEBIMAGE program listing 156
listing 188, 197
modifying character arrangement table 192
multiple sources 193
structure 155
World Trade GRAFMOD 191
World Trade National Use Graphics 191

GRAPHIC module
IEBIMAGE program 155

GRAPHIC statement
IEBIMAGE program 173

syntax 171, 172
guide to utility program functions 1

H
HDNGLST page header parameter

syntax 373
hexadecimal output

printing
example 233

I
IBM 3495 Tape Library Dataserver 268
ICEGENER 117
ICF (integrated catalog facility) 357

See also CVOL
IEBCOMPR program

COMPARE statement 16
comparing data sets 13
description 13
examples 17, 23
EXEC statement 15
EXITS statement 16
input 14
job control statement 15
LABELS statement 17
output 14

418 DFSMS/MVS V1R5 Utilities

IEBCOMPR program (continued)
return codes 373
sequential data set

example 18
SYSIN DD statement 15
SYSPRINT DD statement 15
SYSUT1 DD statement 15
SYSUT2 DD statement 15
user exit routines 389
utility control statement 15, 17
verifying backup copy 13

IEBCOPY
unload data set

attribute records 384
IEBCOPY program 25

ABEND codes 374
altering load modules in place 35
ALTERMOD statement 46, 47
anyname1 DD statement 44
anyname2 DD statement 44
buffer size 36, 37
compressing data set

processing considerations 34
converting

load modules to program objects 25
partitioned data set to PDSE 26
program objects to load modules 25

COPY statement 46, 48
COPYGRP statement 46, 49
copying data set 26
copying DDM attributes 26
copying load modules 35
copying members with aliases 30
copying or loading unload data sets 28
copying program objects

COPYGRP 32
COPYMOD

example 76
COPYMOD statement 46, 50
data set

backing up 27
merging 27
unloading 27

description 25
directory information

copying 28
examples 53
EXCLUDE statement 29, 46, 51
excluding members 30
EXEC JCL statement 41
INDD statement 46
input 38
inserting RLD counts 35
invoking from application program

example 370, 372
job control statement 40, 41

IEBCOPY program (continued)
JOB statement 41
load operation 25
load processing 31
logical record length 28
long names 33
MEMBER parameter 32, 33
merging data set 27
output 38
reblocking load modules 35
renaming selected members 32
replacing data set members 31
restrictions 39
return codes 374
SELECT statement 29, 46, 52

renaming members 32
replacing aliases 33

selecting members to be copied 29
selecting members to be loaded or unloaded 29
selective copy 31
SYSIN DD statement 45
SYSPRINT DD statement 43
SYSUT1 DD statement 44
SYSUT2 DD statement 44
SYSUT3 statement 45
SYSUT4 statement 45
table size 36, 37
unload data set

directory records 383
member data records 385
note list records 385
rules and restrictions 381

unload data set DCB parameters 28, 45
unload data set format 379
unloading data set 27
User ABEND codes 374
utility control statement 46
virtual storage 36
work area size 36

IEBDG program
actions 83, 90
anyname1 DD statement 85
anyname2 DD statement 85
CREATE statement 396
defining record fields 81
description 81
DSD statement 86
END statement 98
examples 98, 107
EXEC statement 85
exits 396
FD statement 87
IBM supplied patterns 81
input 84
job control statement 84, 86
modifying record fields 83

 Index 419

IEBDG program (continued)
output 84
return codes 374
SYSPRINT DD statement 85
user exit routines 389
user-specified patterns 82
utility control statement 86, 98

IEBEDIT program
description 109
examples 112, 116
EXEC JCL statement 110
input 109
job control statement 110
JOB statement 110
output 109
return codes 374
SYSIN DD statement 110
SYSPRINT DD statement 110
SYSUT1 DD statement 110
SYSUT2 DD statement 110
utility control statement 111, 112

IEBGENER 117
IEBGENER program 123

buffers 123
changing logical record length 120
converting

H-set BCDIC to EBCDIC 131
packed decimal to unpacked decimal 131
unpacked decimal to packed decimal 131

copying
note, no directory entry processing 117

creating
edited data set 119
partitioned data sets or PDSEs 117

DBCS
data 121
example 138

deleting SO/SI 130
description 117
examples 132, 139
EXEC statement 122
input 121
inserting SO/SI 130
invoking from application program

example 371
job control statement 122, 124
JOB statement 122
output 121
partitioned data set

adding members 118
example 133, 134

PDSE 118
reblocking

example 135
region size calculation 123
return codes 375

IEBGENER program (continued)
sequential data set

example 134, 138
SYSIN DD statement 122
SYSPRINT DD statement 122
SYSUT1 DD statement 122
SYSUT2 DD statement 122
user exit routines 389
utility control statement 124, 132

EXITS 126
GENERATE statement 125
LABELS statement 127
member 128
RECORD statement 128

IEBIMAGE program
3800 FCB module structure 145
4248 FCB module structure 146
character arrangement table module 150
CHARSET module listing 158
CHARSET module structure

3800 Model 1 and Model 3 158
description 157

CHARSET statement 173, 175
COPYMOD module

structure and listing 149, 150
COPYMOD statement 166, 169
creating

character arrangement table module 150
copying modification module 149
FCB module 144
graphic character modification module 154
library character set module 157

description 141
examples 179, 201
EXEC statement 160
FCB module listing 147
FCB statement 162, 166
GRAPHIC module

listing 156
structure 155

GRAPHIC statement 170, 173
INCLUDE statement 175
input 160
job control statement 160, 161
JOB statement 160
module

naming conventions 144
structure 143

NAME statement 176
operation groups 162
OPTION statement 177
output 160
printer models supported 141
return codes 375
SYS1.IMAGELIB data set 143
SYSIN DD statement 160

420 DFSMS/MVS V1R5 Utilities

IEBIMAGE program (continued)
SYSPRINT DD statement 160
SYSUT1 DD statement 160
TABLE module

listing 152
structure 151

TABLE statement 169, 170
utility control statement 161, 179

IEBISAM program
description 203
examples 209, 211
EXEC statement

syntax 208
exit routine

programming 206
input 207
ISAM

copying 203
creating from unloaded data set 205
printing logical records 205
unloading 203

job control statement 207, 211
JOB statement 207
output 207
overriding DCB control information 204
record heading buffer 206
return codes 375
SYSPRINT DD statement 207
SYSUT1 DD statement 207
SYSUT2 DD statement 207

IEBPTPCH program
description 213
edited data set 213
examples 226, 234
EXEC statement 216
input 215
job control statement 215, 217
output 215
printing 234

data set 213
DBCS 214
disk 215
partitioned directory 214
select member 213
selected records 214
tape 215

punching 234
data set 213
DBCS 214
disk 215
partitioned directory 214
select member 213
selected records 214
tape 215

return codes 376
SYSIN DD statement 216

IEBPTPCH program (continued)
SYSPRINT DD statement 216
SYSUT DD statement 216
SYSUT2 DD statement 216
user exit routines 389
utility control statement 217, 226

EXITS 222
LABELS 225
MEMBER 222
RECORD 223
TITLE 221

IEBUPDTE program
ALIAS statement

syntax 248
creating with card input

example 259
creating data set

example 254
example, partitioned data set 254

creating master 235
data statement 246
deleting records

example 254
description 235
detail statement 244, 246

restrictions 246
syntax 244

ENDUP statement
syntax 249

example, new generation 260
examples 249, 261
EXEC statement 236
FUNCTION statement 239

restrictions 242
syntax 239

input 236
job control statement 236, 238
JOB statement 236
LABEL statement

syntax 247
library 235

adding records 257
example 250, 251, 256, 257, 261
insert 256
partitioned 251
renumber 257
SYS1.PROCLIB 250

logical record 246
modifying existing data set 235
organization 235
output 236
REPLACE statement

example 253
return codes 376
sequential data set

example, copying 260

 Index 421

IEBUPDTE program (continued)
SYSPRINT DD statement 237
SYSUT1 DD statement 237
SYSUT2 DD statement 237
updating data set

example, partitioned data set 254
utility control statement 238, 249

label 247
IEHATLAS Program 263
IEHINITT program

anyname DD statement 269
description 265
examples 273, 277
EXEC statement 269
input 268
job control statement 269, 271
JOB statement 269
output 268
PARM parameter, EXEC statement 269
return codes 376
standard label for magnetic tape 267
syntax 269
SYSIN DD statement 269
SYSPRINT DD statement 269
utility control statement 271, 273

IEHLIST program
description 279
directory

partitioned data set 279
PDSE 279
unedited (dump) format 281

examples 289, 291
EXEC statement 285
input 284
invoking from application program

example 373
job control statement 284, 286
JOB statement 285
listing

CVOL entries 279
edited format 280, 281
formatted VTOC 400
indexed VTOC 282
partitioned data set directory 279, 281
PDSE directory 279, 281
unedited (dump) format 281, 283
VTOC 281, 283, 284

output 284
partitioned data set 287
return codes 377
sample VTOC listing 399
SYSIN DD statement 285
SYSPRINT DD statement 285
utility control statement 286, 289

LISTPDS statement 287
LISTVTOC statement 288

IEHMOVE program
anyname DD statement 309
buffers 308
copying

BDAM 301
CVOL 304
data set 298
group of cataloged data sets 303
multivolume data sets 302
partitioned data set 299
sequential data set 298
unmovable data sets 303
volume 305

description 293, 311
examples 325, 331
EXCLUDE statement 329
EXEC statement 307

syntax 307
input 306
job control statement 307, 311
JOB statement 307
moving

BDAM 301
CVOL 304
data set 298
group of cataloged data sets 303
multivolume data sets 302
partitioned data set 299
sequential data set 298
unloaded data set 302
unmovable data sets 303
volume 305

output 306
partitioned data set

example 326, 327
RACF protection 297
reblocking data set 297
return codes 377
sequential data set 329

example 325, 329
SMS volumes, move or copy 306
space allocation 295
SYSIN DD statement 309
SYSPRINT DD statement 309
SYSUT1 DD statement 309
tape DD statement 310
utility control program 312

COPY DSGROUP 314, 316
COPY PDS statement 316
MOVE 316
MOVE DSGROUP 314
MOVE PDS statement 316

utility control statement 311, 322
COPY CATALOG 319, 320
COPY VOLUME 320
EXCLUDE 323
INCLUDE 322

422 DFSMS/MVS V1R5 Utilities

IEHMOVE program (continued)
utility control statement (continued)

MOVE CATALOG 319, 320
MOVE VOLUME 320
REPLACE 324
SELECT 323

volume size compatibility 294
IEHPROGM program 335

anyname DD statement 343
CATLG statement 335

function restrictions 335
CVOL

building GDG index 339
building index alias 336
catalog data set 335
connecting 337
deleting index alias 336
maintaining GDG index 339
releasing 337

description 333
examples 355, 362
EXEC statement 343
input 342
job control statement 343, 345
JOB statement 343
output 342
password

adding 341
deleting 342
maintaining 339

password entries
listing 342

rename data set 334
rename member 334
return codes 377
scratching data set or member 333
SYSIN DD statement 343
SYSPRINT DD statement 343
UNCATLG statement 335

function restrictions 335
utility control statement 345, 355

BLDA statement 350
BLDX statement 349
CATLG statement 348
CONNECT statement 350
DLTA statement 350
DLTX statement 349
RELEASE statement 350
RENAME statement 347
SCRATCH statement 345
UNCATLG statement 348

IFASMFDP 124
IFASMFDP tape 365
IFHSTATR program

description 363
example 367

IFHSTATR program (continued)
EXEC statement 366
I/O 365
job control statement 366
JOB statement 366
sample printed output 365
SYSUT1 DD statement 366
SYSUT2 DD statement

example 366
tape quality 364

image
library, IEBIMAGE program 143, 175
printer, IEBIMAGE program 141

INCLUDE statement
COPY statement

DSGROUP 311
PDS 311

IEBIMAGE program
syntax 176

IEHMOVE program 322
MOVE statement

DSGROUP 311
PDS 311

INDD parameter
COPY statement 48
COPYGRP statement 49
COPYMOD statement 50

INDD statement
IEBCOPY program 46

INDD= statement
IEBCOPY program 51

index
BLDX statement 349
build syntax 349
building alias 336
copying

directory entry processing 117
IEBGENER program 117

CVOL 348
building 336
deleting 336
GDG 339

delete syntax 349
DLTX statement 349
GDG

example, building 360
model DSCB and build GDG

example 361
indexed sequential access method 333

See also ISAM
indexed VTOC

listing 282
INHDR/INTLR parameter

user exit routines 389
INITT statement, IEHINITT program 271, 273

ACCESS parameter 273

 Index 423

INITT statement, IEHINITT program (continued)
DISP parameter 272
example 271
LABTYPE parameter 273
NUMBTAPE parameter 273
OWNER parameter 272
SER parameter 272
syntax 271

input
IEHPROGM program 342

INREC/OUTREC parameter
user exit routines 389

INSERT parameter
restrictions 245

integrated catalog facility 357
See also CVOL

IOERROR parameter 389
ISAM (indexed sequential access method)

cataloging in CVOL 335
copying

description 203
example 209

creating from an unloaded data set 205
loading

example 210
printing logical records

description 205
example 210

scratching 333
unloading

example 210
ISAM data set

rename 334
ISO/ANSI

volume access security 273
ISO/ANSI volume access security 273

J
JCL (job control language)

IEBDG program 84
job control statement

IEBCOMPR program 15
IEBCOPY program 40, 41
IEBEDIT program 110
IEBGENER program 122, 124
IEBIMAGE program 160, 161
IEBISAM program 207, 209
IEBPTPCH program 215, 217
IEBUPDTE program 236, 238
IEHINITT program 269, 271
IEHLIST program 284, 286
IEHMOVE program 307, 311
IEHPROGM program 343, 345
IFHSTATR program 366

job step
copying

example 115
copying multiple jobs

example 113
copying to output data set

example 112
edit copying

example 114
selective

example 114

K
key

creating 117
output record 126

KEY parameter 389

L
label processing

description 394
LABELS statement

IEBCOMPR program
syntax 17

IEBGENER program
syntax 127

IEBPTPCH program
syntax 225

IEBUPDTE program 247
processing routines 393

LABTYPE parameter
INITT statement 273

LC parameter
IEBCOPY program 42

library
character set module

building 197, 201
creating 157, 173
description 141
IEBIMAGE listing 158
listing 197, 201
structure 157

IEBUPDTE program
example, creating 252
example, partitioned members 251
partitioned members 235

maintaining 143
printer data 141
tape quality 364
update

example 253
library member

creating data set
example 254

424 DFSMS/MVS V1R5 Utilities

library member (continued)
updating data set

example 254
line overrun conditions 167, 177, 178
LINECNT parameter

IEBCOPY program 42
LINK macro 269

parameter lists 373
utility program

syntax 369
LIST parameter

IEBCOPY program 42
LIST statement, IEHPROGM program

syntax 355
LISTCTLG statement, IEHLIST program

syntax 286
listing

CVOL entries 279, 286
example 289, 290

edited load modules 280
IEBIMAGE program

COPYMOD module 150
library character set module

example 197
partitioned data set directory 279

entries 287
example 290

password entries 342
PDSE directory 279, 287

example 290
unedited format 281
variables 10
VTOC

edited format 282
entries 288
example 291
IEHLIST program 399
indexed 282
unedited (dump) format 283

LISTPDS statement, IEHLIST program
syntax 287

LISTVTOC statement, IEHLIST program
syntax 288

load module
alter in place 35, 75
ALTERMOD statement 47
block size 51
copying 35
listing, edited 280
reblocking 35, 78

example 76
replacing

example 76
load modules

converting to program objects 25

load processing
IEBCOPY program 31

loading
ISAM

example 210
labeled 7-track tape

example 329
merging

example 73
partitioned from sequential data set

example 72
re-creating a partitioned data set 25
sequential data set

example 329
loading library

distributing
example 77

reblocking
example 77

loading processing
 IEBCOPY program 32

logical record
IEBCOPY program

length 28
IEBUPDTE program

data statement 246
ISAM

printing 205
length, change 120

LPP parameter
IEBCOPY program 42

M
macro

BDAM 302
CLOSE 395
LINK 269, 369
LOAD 206
OPEN 395
RETURN 390
SETPRT 144, 161

macro libraries 235
MAXBLK parameter

IEBCOPY program 51
member data records

IEBCOPY unload data set 385
MEMBER parameter

IEBCOPY program
EXCLUDE statement 52
renaming member 32
SELECT statement 52

MEMBER statement
IEBGENER program 128, 132

syntax 128
IEBPTPCH program 222

syntax 222

 Index 425

merge
partitioned data set

IEBCOPY program 25
merging

COPY statement 316
copying

example 73
loading

example 73
MOVE statement 316
partitioned data set

example 56, 62
sequential data set

partitioned data sets 134
merging data sets

directory block allocation 27
MINBLK parameter

IEBCOPY program 51
module

alias name 143
alter in place 35, 75
copying 35
naming conventions for IEBIMAGE 144
reblocking 35
structure 143

MOVE CATALOG statement
IEHMOVE program 319, 320

MOVE DSGROUP statement
IEHMOVE program 314, 316

MOVE DSNAME statement
IEHMOVE program 312, 314

MOVE PDS statement
IEHMOVE program 316, 318

MOVE VOLUME statement
IEHMOVE program 320, 321

moving
basic

sequential data set 298
BDAM macro 302
cataloged data set

example 330
CVOL

example 331
SMS-managed volume 304

data set
BDAM 301
cataloged data sets 303
COPYAUTH (copy authorization) 297
IEHMOVE program 312
multivolume 302
partitioned data set 299
RACF 297
reblocking 297
unloaded 302
unmovable 303

disk volume to separate volume
example 325

moving (continued)
IEHMOVE program

example 325, 328, 331
merging

example 326
optional

sequential data set 298
sequential data set 298
unsuccessful

space allocated 296
volume 305
volume of data sets

example 327, 329
multiple copy operation

examples 64, 72
multitasking environment

allocation/deallocation, dynamic
unpredictable result 344

multivolume data set
copying 302
moving 302

N
NAME statement

IEBIMAGE program
syntax 176

naming
modules created by IEBIMAGE 144
new image library module 176

nonlabel processing routine 393
notational conventions

utility programs 9
note list records

IEBCOPY unload data set 385
NUMBER statement

IEBUPDTE program 244, 247
NUMBTAPE parameter

INITT statement 273

O
OPEN macro

user label 395
operation groups

IEBIMAGE program 162
OPTCD=W 44
OPTION statement, IEBIMAGE program 177

syntax 177
OUTHDR/OUTLR parameter

user exit routines 389
output

IEHPROGM program 342
output records

generating with IEBDG 100, 104

426 DFSMS/MVS V1R5 Utilities

P
page header parameter, HDNGLST

syntax 373
page margins, specifying for 3800 and 4248

printers 164
parameter list

building 370
parameters

label processing 393
nonlabel processing 393

PARM parameter (EXEC statement)
IEHINITT program 269

partitioned data set 26
back up 27
block size when copied 51
cataloging in CVOL 335
comparing

example 21, 22, 23
compressing

processing considerations 34
converting

to PDSE 78
to sequential 235

copying 299
example 22, 54
excluding members 30
IEBCOPY program 25, 26
members with alias names 30
selecting members 29

copying multiple operations
example 64, 72

copying select members
example 59

copying selected members
example 56, 60

creating 235
creating data set

library 235
creating from sequential

example 133, 134
creating from sequential input 117
directory

comparing data sets 13
example 231
listing 279, 280
printing 214, 287
punching 214
unedited (dump) format 281

directory information
copying 28

listing directory 287
example 290

listing members 287
loading 28

example 72

partitioned data set (continued)
member

adding 101, 118
loading 29
renaming 32, 334
replacing 31
unloading 29

merging
example 62
IEBCOPY program 25
sequential data set 134

modifying 235
moving 299
printing 213, 231, 234

example 227
printing a directory

example 290
punching 213
renaming members

example 359
replacing select members

example 59
scratching 333
selected records, printed

example 232
source language modifications 235
unload format, IEBCOPY 379
unloading 27
unused areas (gas) 34
updating data set

library 235
partitioned data set extended 26

See also PDSE
partitioned output 128
password

adding 341
deleting 342
example, defining 357
example, listing 358
listing entries 342
maintaining 339
replacing 342

example 358
patterns of test data

IBM supplied 81
specifying type 89
user-specified 82

example 105
PDS 25

See also partitioned data set
PDSE (partitioned data set extended)

backing up 27
comparing 13, 22
converting 235

partitioned data set 78
converting to partitioned data set 26

 Index 427

PDSE (partitioned data set extended) (continued)
copying 26
creating

library of partitioned members 235
sequential input 117

directory
edited list 280
listing 279, 281, 287
printing 214
punching 214
unedited (dump) format 281

directory information
copying 28

directory printing
example 290

loading 28
member

adding 118
copying 29
copying with alias names 30
excluding from copy 30
renaming 32
replacing 31, 32

modifying 235
printing 213
program objects

replace 79, 80
to PDSE 78

punching 213
source language modifications 235
unload format, IEBCOPY 379
unloading 27
updating 235

PRECOMP parameter 389
PRINT statement

IEBPTPCH program 217
PRINT statement, IEBPTPCH program 217, 221
printer

3800 FCB module structure
Model 1 145

4248 FCB module structure 146
FCB 143

printer channel codes
conventions for channels 1, 9 and 12 164
FCB module 144
specifying in FCB statement 164

printing
data set 213
DBCS 121

example 234
disk 215
edited data set 213
hexadecimal output

example 233
IEBIMAGE program 141
IFHSTATR program

example 367

printing (continued)
IFHSTATR program (continued)

type 21 records 363
ISAM

discussed 205
example 210

members of data set 213
partitioned data set 213, 232

directory 214, 279, 287
example 231, 234, 290
example, printing member 227

PDSE 213
directory 214, 279, 287
example, directory 290

record group
example 230

selected records 214
example 232

sequential data set 213
example 132, 228, 229, 231, 232

tape 215
titles 221
type 21 SMF records

example 367
processing considerations for compress 35
processing routine

label parameters 393
nonlabel parameters 393

program objects
alias names 32
converting to load modules 25
member 32

protection
data set

adding passwords 341, 357
deleting passwords 342
example 357
replacing passwords 342

listing passwords
example 358

maintaining a password 339
password

listing entries of data set 342
RACF 297
replacing passwords

example 358
PUNCH statement

IEBPTPCH program 217
PUNCH statement, IEBPTPCH program 217, 221
punching

data set
partitioned 213
PDSE 213
sequential 213

DBCS 214
disk 215

428 DFSMS/MVS V1R5 Utilities

punching (continued)
edited data set 213
partitioned data set 213
partitioned data set directory 214
PDSE 213
PDSE directory 214
selected records 214
sequential data set 213

example 227
tape 215

R
RACF (Resource Access Control Facility)

IEHMOVE program 297
reblocking

data set 297
DBCS 121
example 135
load modules 35

record
fields

altering contents with IEBDG 90
changing the contents with IEBDG 83
defining contents with IEBDG 81, 87, 92
rippling contents of 99

group
defining 128, 223
dividing sequential data sets 117
fields 224

record formats
IEBCOPY unload data set 379

record group
printing

example 230
RECORD statement

IEBGENER program 128, 129, 132
IEBPTPCH program 223, 225

syntax 223
referencing aids

special 11
RELEASE statement

IEHPROGM program 350
relocation dictionary 35

See also RLD
RENAME parameter

MOVE/COPY to SMS volume 293
RENAME statement

IEHPROGM program 347, 348
renaming

data set 333
multi-volume data set

example 357
partitioned data set

example 359

REPEAT statement, IEBDG program 92
REPL statement, IEBUPDTE program 244
REPLACE option

using 32
REPLACE parameter

IEBCOPY program 42
REPLACE statement

IEBUPDTE program 239
example 253

IEHMOVE program 324
IEHPROGM program 353
subordinate control statements 311

replacement level
data set 31
member 32

replacing
select members

example 59
replacing data set members 31
REPRO statement

IEBUPDTE program 239, 244
restrictions

IEBCOPY program 39
unload data set, IEBCOPY 381
utility programs 8

restrictions, function
CATLG statement, IEHPROGM program 335
UNCATLG statement, IEHPROGM program 335

return codes
IEBDG user exit routine 396
IEBIMAGE program 375
IEBISAM program 375
IEBISAM user exit routine 207
IEBPTPCH program 376
IEBUPDTE program 376
IEHINITT program 376
IEHLIST program 377
IEHMOVE program 377
IEHPROGM program 377
totaling routine 395
user exit routine 391
utility programs 373, 374, 375, 377

RETURN macro
exit routine 390
format 390

RLD (relocation dictionary)
inserting counts 35

S
SCRATCH statement

IEHPROGM program 345, 346, 347
scratching data set 333

example 356
SELECT statement

COPY statement
DSGROUP 311

 Index 429

SELECT statement (continued)
IEBCOPY program 46, 52, 53
IEHMOVE program 324
MOVE statement

DSGROUP 311
renaming members 32
replacing members 33

selecting
members for loading 29
members for unloading 29
members to be copied 29

sequential data set 120
cataloging in CVOL 335
comparing 13

example 18, 20, 21
comparing density

example 19
converting 235
copying 134, 139, 298

example 20, 136, 138
creating 235
creating partitioned

example 133
editing 139

example 136, 138
example

comparing 20
copying 20

fields 99
IEHMOVE program 298
merging

partitioned data set 134
modifying 235
moving 298
printing 213, 232

example 132, 231
punching 213, 228

example 227
reblocking 135
renaming 334
scratching 333
source language modifications 235
user specifications

example 229
SER parameter

INITT statement 272
SETPRT macro 144, 161
SIO usage count 366
SIZE parameter

IEBCOPY program 42
SMF (System Management Facilities)

format of type 21 records 363
SMS (Storage Management Subsystem)

copying CVOL 304
indexed VTOC list 283
moving 293

SMS (Storage Management Subsystem) (continued)
preallocate data set 293
scratching 333

SMS-managed data set
CVOL 335

SMS.IND field in formatted VTOC listing 402
space allocation

IEHMOVE program 295
standard label

magnetic tape volumes 267
Storage Management Subsystem 333

See also SMS
syntax

control statement 25
See also utility control statement

HDNGLST parameter 373
IEBCOMPR program

COMPARE statement 16
EXITS statement 16
LABELS statement 17

IEBCOPY program
ALTERMOD statement 47
COPY statement 48
COPYGRP statement 49
COPYMOD statement 50
EXCLUDE statement 52
SELECT statement 52

IEBEDIT program
EDIT statement 111

IEBGENER program
EXIT statement 126
GENERATE statement 125
LABELS statement 127
MEMBER statement 128
RECORD statement 129

IEBIMAGE program
CHARSET statement 173, 174
COPYMOD statement 167
FCB statement 163
GRAPHIC statement 171, 172
INCLUDE statement 176
NAME statement 176
OPTION statement 177
TABLE statement 169

IEBPTPCH program
EXITS statement 222
LABELS statement 225
MEMBER statement 222
PRINT statement 217
PUNCH statement 217
RECORD statement 223
TITLE statement 221

IEBUPDTE program
ALIAS statement 248
DETAIL statement 244
ENDUP statement 249
FUNCTION statement 239

430 DFSMS/MVS V1R5 Utilities

syntax (continued)
IEBUPDTE program (continued)

LABEL statement 247
IEHINITT program 271
IEHLIST program

LISTCTLG statement 286
LISTPDS statement 287
LISTVTOC statement 288

IEHMOVE program
COPY CATALOG statement 319
COPY DSGROUP statement 314
COPY DSNAME statement 312
COPY PDS statement 316
COPY VOLUME statement 320
INCLUDE statement 322
MOVE CATALOG statement 319
MOVE DSGROUP statement 314
MOVE DSNAME statement 312
MOVE PDS statement 316
MOVE VOLUME statement 320
REPLACE statement 324
SELECT statement 324

IEHPROGM program
ADD statement 353
BLDA statement 350
BLDG statement 352
BLDX statement 349
CATLG statement 348
CONNECT statement 351
DELETEP statement 354
DLTA statement 350
DLTX statement 349
EXEC statement 344
LIST statement 355
RELEASE statement 351
RENAME statement 347
REPLACE statement 353
SCRATCH statement 346
UNCATLG statement 348

page header parameter, HDNGLST 373
utility program

LINK macro 369
SYS1.IMAGELIB data set

maintaining 143
storage requirements 141

SYS1.MAN tape 365
SYS1.MANX data set 365
SYS1.MANY data set 365
SYS1.PROCLIB

example 250
SYS1.VTOCIX data set 288
SYSCTLG (system catalog)

defining data set 351
SYSCTLG statement

data set 304

SYSIN DD statement
IEBCOMPR program 15
IEBCOPY program 41, 45
IEBEDIT program 110, 286
IEBGENER program 122, 124
IEBIMAGE program 160, 161
IEBPTPCH program 216, 217
IEBUPDTE program 238
IEHINITT program 269, 271
IEHLIST program 285
IEHMOVE program 311
IEHPROGM program 343, 345

SYSOUT data set
example, printing 231

SYSPRINT DD statement
IEBCOMPR program 15
IEBCOPY program 41, 43
IEBEDIT program 110
IEBGENER program 122
IEBIMAGE program 160, 161
IEBISAM program 207
IEBPTPCH program 216
IEBUPDTE program 237
IEHINITT program 269, 270
IEHLIST program 285
IEHMOVE program 309
IEHPROGM program 343, 344

system utility programs 5
SYSUT DD program

IEBPTPCH program 216
SYSUT1 DD statement

IEBCOMPR program 15
IEBCOPY program 41, 44
IEBEDIT program 110
IEBGENER program 122, 123
IEBIMAGE program 160, 161
IEBISAM program 207
IEBPTPCH program 216
IEBUPDTE program 237
IEHMOVE program 309
IFHSTATR program 366

SYSUT2 DD statement
IEBCOMPR program 15
IEBCOPY program 41
IEBEDIT program 110
IEBGENER program 122
IEBISAM program 207
IEBPTPCH program 216
IEBUPDTE program 237
IFHSTATR example 366

SYSUT3 DD statement
IEBCOPY program 41, 45

SYSUT4 DD statement
IEBCOPY program 41, 45

 Index 431

T
TABLE

module listing, IEBIMAGE program 152
module structure

IEBIMAGE 151
statement 169, 170

syntax 169
tape

library condition 364
tape DD statement

IEHMOVE program 310
tape input

comparing data sets
example 20

tape labels
creating 277
example 274, 275
IEHINITT program

volume 265
Tape Library Dataserver 265
tape resident data sets

7-tract tape
example 19

TIOT, changes caused
allocation/deallocation, dynamic

multitasking environment, during 344
TITLE statement, IEBPTPCH program 221

syntax 221
TOTAL parameter

user exit routines 389
totaling routine

return codes 395
translation table

module structure 151

U
uncataloging data set

example 356
UNCATLG statement

IEHPROGM program 348
function restrictions 335

UNCATLG statement (IEHPROGM) 348
unload data set

copying, IEBCOPY program 28
DCB parameter, IEBCOPY program 28
loading, IEBCOPY program 28

unload data set format, IEBCOPY 379
unload data set, IEBCOPY

attribute records 384
directory records 383
member data records 385
note list records 385
record formats 379
rules and restrictions 381

unload data set, IEBCOPY program
formats

invalid 380
new 380
old (pre-PDSE) 380
transfer 380

unloading
copying 302
creating sequential data sets 25
disk volume

example 329
excluding members

example 60, 73
ISAM

example 210
moving 302
partitioned data set 27, 379
PDSE 27
reorganizing 294
selecting members

example 73
unlabeled tape volume

example 329
unloading and compressing

partitioned data set or PDSE
example 61

unmovable data sets
copying 303
moving 303

UPDATE parameter
restrictions 242

user
label processing

data 396
data set descriptors 394

User ABEND codes
IEBCOPY program 374

user exit routine
returning to utility program 390

user label
modifying physical record 127
processing with IEBGENER 127
system action 395
treated as data 226

user-specified
example 105
patterns of test data 82, 89, 96, 105

utility control statement
ADD 239, 244, 352
BLDA 350
BLDG 352
BLDX 349
CATLG 348
CHANGE 239, 244
coding 8, 9
CONNECT 350

432 DFSMS/MVS V1R5 Utilities

utility control statement (continued)
continuing 8
COPY CATALOG 319, 320
COPY DSGROUP 314, 316
COPY DSNAME 312, 314
COPY PDS statement 316, 318
COPY VOLUME 320, 321
CREATE 92, 98
DELETE 244, 247
DELETEP 354
description 8
DLTA 350
DLTX 349
DSD 86
EDIT 111, 112
END 98
ENDUP 249
EXCLUDE 323
EXITS 16, 126, 222
FD 87, 92
fields 8
format 8
GENERATE 125
IEBCOMPR program 15, 17
IEBCOPY program 46
IEBIMAGE program 161
IEBPTPCH program 217, 226
IEBUPDTE program 249
IEHINITT program 268
IEHLIST program 286, 289
IEHPROGM program 345, 355
INCLUDE 322
INITT 271, 273
LABEL 247
LABELS 127, 225
LIST 355
LISTCTLG 286
LISTVTOC 288
MEMBER 128, 222
MOVE CATALOG 319, 320
MOVE DSGROUP 314, 316
MOVE DSNAME 312, 314
MOVE PDS statement 316, 318
MOVE VOLUME 320, 321
NUMBER 244, 246, 247
PRINT 217, 221
PUNCH 217, 221
RECORD 128, 132, 223, 225
RELEASE 350
RENAME 347, 348
REPEAT 92
REPL 239, 244
REPLACE 324, 352
REPRO 239, 244
SCRATCH 345, 347
SELECT 323

utility control statement (continued)
TITLE 221
UNCATLG 348

utility program
exit routine

return codes 395
totaling 395

utility programs 5
data set 5
description 1
exit routine

overview 389
programming considerations 390
register contents 390
return codes 391
returning 390

functions 1, 11
invoking from application program 369
notational conventions 9
restrictions 8
RETURN macro

exit routine 390
sharing data sets 7
system 1

V
variable-spanned records

BDAM data sets
copying 301
moving 301

VERSION parameter
INITT statement 273

vertical line spacing 144
virtual storage requirement

graphic character modification module 142
library character set 142

volume
table of contents 281

See also VTOC
volume data set copy 305
volume data set move 305
volume label initializing 271
volume label set 265
volume size compatibility

IEHMOVE program 294
VTOC (volume table of contents)

formatted listing produced by IEHLIST 400
IEHLIST program output 399
listing

edited format 281
entries 288
example 291
IEHLIST program 281, 284
indexed 282
unedited (dump) format 283

 Index 433

W
WORK parameter

IEBCOPY program 43

434 DFSMS/MVS V1R5 Utilities

Readers' Comments — We'd Like to Hear from You

DFSMS/MVS Version 1 Release 5
Utilities

Publication No. SC26-4926-03

Overall, how satisfied are you with the information in this book?

How satisfied are you that the information in this book is:

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? Ø Yes Ø No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Overall satisfaction Ø Ø Ø Ø Ø

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Accurate Ø Ø Ø Ø Ø
Complete Ø Ø Ø Ø Ø
Easy to find Ø Ø Ø Ø Ø
Easy to understand Ø Ø Ø Ø Ø
Well organized Ø Ø Ø Ø Ø
Applicable to your tasks Ø Ø Ø Ø Ø

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments — We'd Like to Hear from You
SC26-4926-03 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
RCF Processing Department
G26/050
5600 Cottle Road
San Jose, CA 95123-0000

Fold and Tape Please do not staple Fold and Tape

SC26-4926-03

IBM

File Number: S370/S390-30

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC26-4926-ð3

Spine information:

IBM DFSMS/MVS Version 1 Release 5 Utilities

